Do you want to publish a course? Click here

Four-tier response system and spatial propagation of COVID-19 in China by a network model

82   0   0.0 ( 0 )
 Added by Zhigui Lin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighed networked system based on a classical SEAIR epidemiological model. Five stages have been taken into consideration according to four-tier response to Public Health Crisis, which comes from the National Contingency Plan in China. Staggered basic reproduction number has been derived and we evaluate the effectiveness of lockdown and social distancing policies under different scenarios among 19 cities/regions in mainland China. Further, we estimate the infection risk associated with the sequential release based on population mobility between cities and the intensity of some non-pharmaceutical interventions. Our results reveal that Level I public health emergency response is necessary for high-risk cities, which can flatten the COVID-19 curve effectively and quickly. Moreover, properly designed staggered-release policies are extremely significant for the prevention and control of COVID-19, furthermore, beneficial to economic activities and social stability and development.



rate research

Read More

In this paper, a mathematical model is proposed to analyze the dynamic behavior of COVID-19. Based on inter-city networked coupling effects, a fractional-order SEIHDR system with the real-data from 23 January to 18 March, 2020 of COVID-19 is discussed. Meanwhile, hospitalized individuals and the mortality rates of three types of individuals (exposed, infected and hospitalized) are firstly taken into account in the proposed model. And infectivity of individuals during incubation is also considered in this paper. By applying least squares method and predictor-correctors scheme, the numerical solutions of the proposed system in the absence of the inter-city network and with the inter-city network are stimulated by using the real-data from 23 January to $18-m$ March, 2020 where $m$ is equal to the number of prediction days. Compared with integer-order system ($alpha=0$), the fractional-order model without network is validated to have a better fitting of the data on Beijing, Shanghai, Wuhan, Huanggang and other cities. In contrast to the case without network, the results indicate that the inter-city network system may be not a significant case to virus spreading for China because of the lock down and quarantine measures, however, it may have an impact on cities that have not adopted city closure. Meanwhile, the proposed model better fits the data from 24 February to 31, March in Italy, and the peak number of confirmed people is also predicted by this fraction-order model. Furthermore, the existence and uniqueness of a bounded solution under the initial condition are considered in the proposed system. Afterwards, the basic reproduction number $R_0$ is analyzed and it is found to hold a threshold: the disease-free equilibrium point is locally asymptotically stable when $R_0le 1$, which provides a theoretical basis for whether COVID-19 will become a pandemic in the future.
Standard epidemiological models for COVID-19 employ variants of compartment (SIR) models at local scales, implicitly assuming spatially uniform local mixing. Here, we examine the effect of employing more geographically detailed diffusion models based on known spatial features of interpersonal networks, most particularly the presence of a long-tailed but monotone decline in the probability of interaction with distance, on disease diffusion. Based on simulations of unrestricted COVID-19 diffusion in 19 U.S cities, we conclude that heterogeneity in population distribution can have large impacts on local pandemic timing and severity, even when aggregate behavior at larger scales mirrors a classic SIR-like pattern. Impacts observed include severe local outbreaks with long lag time relative to the aggregate infection curve, and the presence of numerous areas whose disease trajectories correlate poorly with those of neighboring areas. A simple catchment model for hospital demand illustrates potential implications for health care utilization, with substantial disparities in the timing and extremity of impacts even without distancing interventions. Likewise, analysis of social exposure to others who are morbid or deceased shows considerable variation in how the epidemic can appear to individuals on the ground, potentially affecting risk assessment and compliance with mitigation measures. These results demonstrate the potential for spatial network structure to generate highly non-uniform diffusion behavior even at the scale of cities, and suggest the importance of incorporating such structure when designing models to inform healthcare planning, predict community outcomes, or identify potential disparities.
The declaration of COVID-19 as a pandemic has largely amplified the spread of related information on social media, such as Twitter, Facebook, and WeChat.Unlike the previous studies which focused on how to detect the misinformation or fake news related toCOVID-19, we investigate how the disease and information co-evolve in the population. We focus onCOVID-19and its information during the period when the disease was widely spread in China, i.e., from January 25th to March 24th, 2020. We first explore how the disease and information co-evolve via the spatial analysis of the two spreading processes. We visualize the geo-location of both disease and information at the province level and find that disease is more geo-localized compared to information. We find a high correlation between the disease and information data, and also people care about the spread only when it comes to their neighborhood. Regard to the content of the information, we find that positive messages are more negatively correlated with the disease compared to negative and neutral messages. Additionally, we introduce machine learning algorithms, i.e., linear regression and random forest, to further predict the number of infected using different disease spatial related and information-related characteristics. We obtain that the disease spatial related characteristics of nearby cities can help to improve the prediction accuracy. Meanwhile, information-related characteristics can also help to improve the prediction performance, but with a delay, i.e., the improvement comes from using, for instance, the number of messages 10 days ago, for disease prediction. The methodology proposed in this paper may shed light on new clues of emerging infections
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.
A key question concerning collective decisions is whether a social system can settle on the best available option when some members learn from others instead of evaluating the options on their own. This question is challenging to study, and previous research has reached mixed conclusions, because collective decision outcomes depend on the insufficiently understood complex system of cognitive strategies, task properties, and social influence processes. This study integrates these complex interactions together in one general yet partially analytically tractable mathematical framework using a dynamical system model. In particular, it investigates how the interplay of the proportion of social learners, the relative merit of options, and the type of conformity response affect collective decision outcomes in a binary choice. The model predicts that when the proportion of social learners exceeds a critical threshold, a bi-stable state appears in which the majority can end up favoring either the higher- or lower-merit option, depending on fluctuations and initial conditions. Below this threshold, the high-merit option is chosen by the majority. The critical threshold is determined by the conformity response function and the relative merits of the two options. The study helps reconcile disagreements about the effect of social learners on collective performance and proposes a mathematical framework that can be readily adapted to extensions investigating a wider variety of dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا