Do you want to publish a course? Click here

Exploring the effect of social media and spatial characteristics during the COVID-19 pandemic in China

344   0   0.0 ( 0 )
 Added by Xiu-Xiu Zhan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The declaration of COVID-19 as a pandemic has largely amplified the spread of related information on social media, such as Twitter, Facebook, and WeChat.Unlike the previous studies which focused on how to detect the misinformation or fake news related toCOVID-19, we investigate how the disease and information co-evolve in the population. We focus onCOVID-19and its information during the period when the disease was widely spread in China, i.e., from January 25th to March 24th, 2020. We first explore how the disease and information co-evolve via the spatial analysis of the two spreading processes. We visualize the geo-location of both disease and information at the province level and find that disease is more geo-localized compared to information. We find a high correlation between the disease and information data, and also people care about the spread only when it comes to their neighborhood. Regard to the content of the information, we find that positive messages are more negatively correlated with the disease compared to negative and neutral messages. Additionally, we introduce machine learning algorithms, i.e., linear regression and random forest, to further predict the number of infected using different disease spatial related and information-related characteristics. We obtain that the disease spatial related characteristics of nearby cities can help to improve the prediction accuracy. Meanwhile, information-related characteristics can also help to improve the prediction performance, but with a delay, i.e., the improvement comes from using, for instance, the number of messages 10 days ago, for disease prediction. The methodology proposed in this paper may shed light on new clues of emerging infections



rate research

Read More

200 - Ji Liu , Xiakai Wang , Haoyi Xiong 2020
As the recent COVID-19 outbreak rapidly expands all over the world, various containment measures have been carried out to fight against the COVID-19 pandemic. In Mainland China, the containment measures consist of three types, i.e., Wuhan travel ban, intra-city quarantine and isolation, and inter-city travel restriction. In order to carry out the measures, local economy and information acquisition play an important role. In this paper, we investigate the correlation of local economy and the information acquisition on the execution of containment measures to fight against the COVID-19 pandemic in Mainland China. First, we use a parsimonious model, i.e., SIR-X model, to estimate the parameters, which represent the execution of intra-city quarantine and isolation in major cities of Mainland China. In order to understand the execution of intra-city quarantine and isolation, we analyze the correlation between the representative parameters including local economy, mobility, and information acquisition. To this end, we collect the data of Gross Domestic Product (GDP), the inflows from Wuhan and outflows, and the COVID-19 related search frequency from a widely-used Web mapping service, i.e., Baidu Maps, and Web search engine, i.e., Baidu Search Engine, in Mainland China. Based on the analysis, we confirm the strong correlation between the local economy and the execution of information acquisition in major cities of Mainland China. We further evidence that, although the cities with high GDP per capita attracts bigger inflows from Wuhan, people are more likely to conduct the quarantine measure and to reduce going out to other cities. Finally, the correlation analysis using search data shows that well-informed individuals are likely to carry out containment measures.
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for the New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough moment for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in peoples mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.
The COVID-19 pandemic has affected peoples lives around the world on an unprecedented scale. We intend to investigate hoarding behaviors in response to the pandemic using large-scale social media data. First, we collect hoarding-related tweets shortly after the outbreak of the coronavirus. Next, we analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020, and dissect the hoarding-related tweets by age, gender, and geographic location. We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population. Furthermore, using topic modeling, we investigate the opinions expressed towards the hoarding behavior by categorizing these topics according to demographic and geographic groups. We also calculate the anxiety scores for the hoarding and anti-hoarding related tweets using a lexical approach. By comparing their anxiety scores with the baseline Twitter anxiety score, we reveal further insights. The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean. Interestingly, beer has the highest calculated anxiety score compared to other hoarded items mentioned in the tweets.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
113 - Ziyu Xiong , Pin Li , Hanjia Lyu 2021
Since March 2020, companies nationwide have started work from home (WFH) due to the rapid increase of confirmed COVID-19 cases in an attempt to help prevent the coronavirus from spreading and rescue the economy from the pandemic. Many organizations have conducted surveys to understand peoples opinions towards WFH. However, the findings are limited due to small sample size and the dynamic topics over time. This study aims to understand the U.S. public opinions on working from home during the COVID-19 pandemic. We conduct a large-scale social media study using Twitter data to portrait different groups who have positive/negative opinions about WFH. We perform an ordinary least squares regression to investigate the relationship between the sentiment about WFH and user characteristics including gender, age, ethnicity, median household income, and population density. To better understand public opinion, we use latent Dirichlet allocation to extract topics and discover how tweet contents relate to peoples attitudes. These findings provide evidence that sentiment about WFH varies across user characteristics. Furthermore, the content analysis sheds light on the nuanced differences in sentiment and reveals disparities relate to WFH.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا