Do you want to publish a course? Click here

T2K measurements of muon neutrino and antineutrino disappearance using $3.13times 10^{21}$ protons on target

96   0   0.0 ( 0 )
 Added by Patrick Dunne
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We report measurements by the T2K experiment of the parameters $theta_{23}$ and $Delta m^2_{32}$ which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino oscillation model at T2Ks neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from $1.49 times 10^{21}$ protons on target (POT) in neutrino mode and $1.64 times 10^{21}$ POT in antineutrino mode are used. The best-fit values obtained by T2K were $sin^2left(theta_{23}right)=0.51^{+0.06}_{-0.07} left(0.43^{+0.21}_{-0.05}right)$ and $Delta m^2_{32}=2.47^{+0.08}_{-0.09} left(2.50^{+0.18}_{-0.13}right)$evmass for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavor neutrino oscillation model where the sine of the mixing angle is allowed to take non-physical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle.



rate research

Read More

We report measurements by the T2K experiment of the parameters $theta_{23}$ and $Delta m^{2}_{32}$ governing the disappearance of muon neutrinos and antineutrinos in the three flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using $7.482 times 10^{20}$ POT in neutrino running mode and $7.471 times 10^{20}$ POT in antineutrino mode, T2K obtained, $sin^{2}(theta_{23})=0.51^{+0.08}_{-0.07}$ and $Delta m^{2}_{32} = 2.53^{+0.15}_{-0.13} times 10^{-3}$eV$^{2}$/c$^{4}$ for neutrinos, and $sin^{2}({overline{theta}}_{23})=0.42^{+0.25}_{-0.07}$ and ${Deltaoverline{m}^2}_{32} = 2.55^{+0.33}_{-0.27} times 10^{-3}$eV$^{2}$/c$^{4}$ for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed.
We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: $sin^2theta_{23}=0.514^{+0.055}_{-0.056}$ and $Delta m^2_{32}=(2.51pm0.10)times 10^{-3}$ eV$^2$/c$^4$ Inverted Hierarchy: $sin^2theta_{23}=0.511pm0.055$ and $Delta m^2_{13}=(2.48pm0.10)times 10^{-3}$ eV$^2$/c$^4$ The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region: $delta_{CP}=[0.15,0.83]pi$ for normal hierarchy and $delta_{CP}=[-0.08,1.09]pi$ for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: $sin^2theta_{23}=0.528^{+0.055}_{-0.038}$ and $|Delta m^2_{32}|=(2.51pm0.11)times 10^{-3}$ eV$^2$/c$^4$.
101 - K. Abe , R. Akutsu , A. Ali 2018
The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of $14.7(7.6)times 10^{20}$ protons on target in neutrino (antineutrino) mode, 89 $ u_e$ candidates and 7 anti-$ u_e$ candidates were observed while 67.5 and 9.0 are expected for $delta_{CP}=0$ and normal mass ordering. The obtained $2sigma$ confidence interval for the $CP$ violating phase, $delta_{CP}$, does not include the $CP$-conserving cases ($delta_{CP}=0,pi$). The best-fit values of other parameters are $sin^2theta_{23} = 0.526^{+0.032}_{-0.036}$ and $Delta m^2_{32}=2.463^{+0.071}_{-0.070}times10^{-3} mathrm{eV}^2/c^4$.
The T2K experiment reports updated measurements of neutrino and antineutrino oscillations using both appearance and disappearance channels. This result comes from an exposure of $14.9~(16.4) times 10^{20}$ protons on target in neutrino (antineutrino) mode. Significant improvements have been made to the neutrino interaction model and far detector reconstruction. An extensive set of simulated data studies have also been performed to quantify the effect interaction model uncertainties have on the T2K oscillation parameter sensitivity. T2K performs multiple oscillation analyses that present both frequentist and Bayesian intervals for the PMNS parameters. For fits including a constraint on ssqthonethree from reactor data and assuming normal mass ordering T2K measures $sin^2theta_{23} = 0.53^{+0.03}_{-0.04}$ and $Delta{}m^2_{32} = (2.45 pm 0.07) times 10^{-3}$ eV$^{2}$c$^{-4}$. The Bayesian analyses show a weak preference for normal mass ordering (89% posterior probability) and the upper $sin^2theta_{23}$ octant (80% posterior probability), with a uniform prior probability assumed in both cases. The T2K data exclude CP conservation in neutrino oscillations at the $2sigma$ level.
This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for muon antineutrino production, accumulating an exposure of $1.71times 10^{20}$ protons on target. In the Far Detector, 97 charged current muon antineutrino events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at $6.3sigma$. The best fit to oscillation yields $Delta bar{m}^{2}=(3.36^{+0.46}_{-0.40}textrm{(stat.)}pm0.06textrm{(syst.)})times 10^{-3},eV^{2}$, $sin^{2}(2bar{theta})=0.86^{+0.11}_{-0.12}textrm{(stat.)}pm0.01textrm{(syst.)}$. The MINOS muon neutrino and muon antineutrino measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا