No Arabic abstract
We use geometric concepts originally proposed by Anandan and Aharonov to show that the Farhi-Gutmann time optimal analog quantum search evolution between two orthogonal quantum states is characterized by unit efficiency dynamical trajectories traced on a projective Hilbert space. In particular, we prove that these optimal dynamical trajectories are the shortest geodesic paths joining the initial and the final states of the quantum evolution. In addition, we verify they describe minimum uncertainty evolutions specified by an uncertainty inequality that is tighter than the ordinary time-energy uncertainty relation. We also study the effects of deviations from the time optimality condition from our proposed Riemannian geometric perspective. Furthermore, after pointing out some physically intuitive aspects offered by our geometric approach to quantum searching, we mention some practically relevant physical insights that could emerge from the application of our geometric analysis to more realistic time-dependent quantum search evolutions. Finally, we briefly discuss possible extensions of our work to the geometric analysis of the efficiency of thermal trajectories of relevance in quantum computing tasks.
A cornerstone of quantum mechanics is the characterisation of symmetries provided by Wigners theorem. Wigners theorem establishes that every symmetry of the quantum state space must be either a unitary transformation, or an antiunitary transformation. Here we extend Wigners theorem from quantum states to quantum evolutions, including both the deterministic evolution associated to the dynamics of closed systems, and the stochastic evolutions associated to the outcomes of quantum measurements. We prove that every symmetry of the space of quantum evolutions can be decomposed into two state space symmetries that are either both unitary or both antiunitary. Building on this result, we show that it is impossible to extend the time reversal symmetry of unitary quantum dynamics to a symmetry of the full set of quantum evolutions. Our no-go theorem implies that any time symmetric formulation of quantum theory must either restrict the set of the allowed evolutions, or modify the operational interpretation of quantum states and processes. Here we propose a time symmetric formulation of quantum theory where the allowed quantum evolutions are restricted to a suitable set, which includes both unitary evolution and projective measurements, but excludes the deterministic preparation of pure states. The standard operational formulation of quantum theory can be retrieved from this time symmetric version by introducing an operation of conditioning on the outcomes of past experiments.
We present a simple proof of the minimum time for the quantum evolution between two arbitrary states. This proof is performed in the absence of any geometrical arguments. Then, being in the geometric framework of quantum evolutions based upon the geometry of the projective Hilbert space, we discuss the roles played by either minimum-time or maximum-energy uncertainty concepts in defining a geometric efficiency measure of quantum evolutions between two arbitrary quantum states. Finally, we provide a quantitative justification of the validity of the efficiency inequality even when the system passes only through nonorthogonal quantum states.
Geometric phase phenomena in single neutrons have been observed in polarimeter and interferometer experiments. Interacting with static and time dependent magnetic fields, the state vectors acquire a geometric phase tied to the evolution within spin subspace. In a polarimeter experiment the non-additivity of quantum phases for mixed spin input states is observed. In a Si perfect-crystal interferometer experiment appearance of geometric phases, induced by interaction with an oscillating magnetic field, is verified. The total system is characterized by an entangled state, consisting of neutron and radiation fields, governed by a Jaynes-Cummings Hamiltonian. In addition, the influence of the geometric phase on a Bell measurement, expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, is studied. It is demonstrated that the effect of geometric phase can be balanced by an appropriate change of Bell angles.
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time, there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these two points of view is a critical step in making the most of this promising technology. In this work we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. To demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.
Analog quantum algorithms are formulated in terms of Hamiltonians rather than unitary gates and include quantum adiabatic computing, quantum annealing, and the quantum approximate optimization algorithm (QAOA). These algorithms are promising candidates for near-term quantum applications, but they often require fine tuning via the annealing schedule or variational parameters. In this work, we explore connections between these analog algorithms, as well as limits in which they become approximations of the optimal procedure.Notably, we explore how the optimal procedure approaches a smooth adiabatic procedure but with a superposed oscillatory pattern that can be explained in terms of the interactions between the ground state and first excited state that effect the coherent error cancellation of diabatic transitions. Furthermore, we provide numeric and analytic evidence that QAOA emulates this optimal procedure with the length of each QAOA layer equal to the period of the oscillatory pattern. Additionally, the ratios of the QAOA bangs are determined by the smooth, non-oscillatory part of the optimal procedure. We provide arguments for these phenomena in terms of the product formula expansion of the optimal procedure. With these arguments, we conclude that different analog algorithms can emulate the optimal protocol under different limits and approximations. Finally, we present a new algorithm for better approximating the optimal protocol using the analytic and numeric insights from the rest of the paper. In practice, numerically, we find that this algorithm outperforms standard QAOA and naive quantum annealing procedures.