Do you want to publish a course? Click here

Behavior of Analog Quantum Algorithms

68   0   0.0 ( 0 )
 Added by Lucas Brady
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Analog quantum algorithms are formulated in terms of Hamiltonians rather than unitary gates and include quantum adiabatic computing, quantum annealing, and the quantum approximate optimization algorithm (QAOA). These algorithms are promising candidates for near-term quantum applications, but they often require fine tuning via the annealing schedule or variational parameters. In this work, we explore connections between these analog algorithms, as well as limits in which they become approximations of the optimal procedure.Notably, we explore how the optimal procedure approaches a smooth adiabatic procedure but with a superposed oscillatory pattern that can be explained in terms of the interactions between the ground state and first excited state that effect the coherent error cancellation of diabatic transitions. Furthermore, we provide numeric and analytic evidence that QAOA emulates this optimal procedure with the length of each QAOA layer equal to the period of the oscillatory pattern. Additionally, the ratios of the QAOA bangs are determined by the smooth, non-oscillatory part of the optimal procedure. We provide arguments for these phenomena in terms of the product formula expansion of the optimal procedure. With these arguments, we conclude that different analog algorithms can emulate the optimal protocol under different limits and approximations. Finally, we present a new algorithm for better approximating the optimal protocol using the analytic and numeric insights from the rest of the paper. In practice, numerically, we find that this algorithm outperforms standard QAOA and naive quantum annealing procedures.



rate research

Read More

Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time, there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these two points of view is a critical step in making the most of this promising technology. In this work we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. To demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.
Digital quantum computing paradigm offers highly-desirable features such as universality, scalability, and quantum error correction. However, physical resource requirements to implement useful error-corrected quantum algorithms are prohibitive in the current era of NISQ devices. As an alternative path to performing universal quantum computation, within the NISQ era limitations, we propose to merge digital single-qubit operations with analog multi-qubit entangling blocks in an approach we call digital-analog quantum computing (DAQC). Along these lines, although the techniques may be extended to any resource, we propose to use unitaries generated by the ubiquitous Ising Hamiltonian for the analog entangling block and we prove its universal character. We construct explicit DAQC protocols for efficient simulations of arbitrary inhomogeneous Ising, two-body, and $M$-body spin Hamiltonian dynamics by means of single-qubit gates and a fixed homogeneous Ising Hamiltonian. Additionally, we compare a sequential approach where the interactions are switched on and off (stepwise~DAQC) with an always-on multi-qubit interaction interspersed by fast single-qubit pulses (banged DAQC). Finally, we perform numerical tests comparing purely digital schemes with DAQC protocols, showing a remarkably better performance of the latter. The proposed DAQC approach combines the robustness of analog quantum computing with the flexibility of digital methods.
Ultrafast chemical reactions are difficult to simulate because they involve entangled, many-body wavefunctions whose computational complexity grows rapidly with molecular size. In photochemistry, the breakdown of the Born-Oppenheimer approximation further complicates the problem by entangling nuclear and electronic degrees of freedom. Here, we show that analog quantum simulators can efficiently simulate molecular dynamics using commonly available bosonic modes to represent molecular vibrations. Our approach can be implemented in any device with a qudit controllably coupled to bosonic oscillators and with quantum hardware resources that scale linearly with molecular size, and offers significant resource savings compared to digital quantum simulation algorithms. Advantages of our approach include a time resolution orders of magnitude better than ultrafast spectroscopy, the ability to simulate large molecules with limited hardware using a Suzuki-Trotter expansion, and the ability to implement realistic system-bath interactions with only one additional interaction per mode. Our approach can be implemented with current technology; e.g., the conical intersection in pyrazine can be simulated using a single trapped ion. Therefore, we expect our method will enable classically intractable chemical dynamics simulations in the near term.
Simulating quantum many-body systems is a highly demanding task since the required resources grow exponentially with the dimension of the system. In the case of fermionic systems, this is even harder since nonlocal interactions emerge due to the antisymmetric character of the fermionic wave function. Here, we introduce a digital-analog quantum algorithm to simulate a wide class of fermionic Hamiltonians including the paradigmatic Fermi-Hubbard model. These digital-analog methods allow quantum algorithms to run beyond digit
We use geometric concepts originally proposed by Anandan and Aharonov to show that the Farhi-Gutmann time optimal analog quantum search evolution between two orthogonal quantum states is characterized by unit efficiency dynamical trajectories traced on a projective Hilbert space. In particular, we prove that these optimal dynamical trajectories are the shortest geodesic paths joining the initial and the final states of the quantum evolution. In addition, we verify they describe minimum uncertainty evolutions specified by an uncertainty inequality that is tighter than the ordinary time-energy uncertainty relation. We also study the effects of deviations from the time optimality condition from our proposed Riemannian geometric perspective. Furthermore, after pointing out some physically intuitive aspects offered by our geometric approach to quantum searching, we mention some practically relevant physical insights that could emerge from the application of our geometric analysis to more realistic time-dependent quantum search evolutions. Finally, we briefly discuss possible extensions of our work to the geometric analysis of the efficiency of thermal trajectories of relevance in quantum computing tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا