Do you want to publish a course? Click here

Strong Structural Controllability of Diffusively Coupled Networks: Comparison of Bounds Based on Distances and Zero Forcing

135   0   0.0 ( 0 )
 Added by Yasin Yazicioglu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the strong structural controllability (SSC) of diffusively coupled networks, where the external control inputs are injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong structurally controllable subspace, which is equal to the smallest possible rank of controllability matrix under admissible (positive) coupling weights. In this paper, we compare two tight lower bounds on the dimension of strong structurally controllable subspace: one based on the distances of followers to leaders, and the other based on the graph coloring process known as zero forcing. We show that the distance-based lower bound is usually better than the zero-forcing-based bound when the leaders do not constitute a zero-forcing set. On the other hand, we also show that any set of leaders that can be shown to achieve complete SSC via the distance-based bound is necessarily a zero-forcing set. These results indicate that while the zero-forcing based approach may be preferable when the focus is only on verifying complete SSC, the distance-based approach is usually more informative when partial SSC is also of interest. Furthermore, we also present a novel bound based on the combination of these two approaches, which is always at least as good as, and in some cases strictly greater than, the maximum of the two bounds. We support our analysis with numerical results for various graphs and leader sets.



rate research

Read More

169 - Yuan Zhang , Yuanqing Xia 2021
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly structurally controllable (SSC), if for any nonzero values of the indeterminate entries, the corresponding system is controllable. This paper introduces a new controllability notion, termed partial strong structural controllability (PSSC), which naturally extends SSC and bridges the gap between structural controllability and SSC. Dividing the indeterminate entries into two categories, generic entries and unspecified entries, a system is PSSC, if for almost all values of the generic entries in the parameter space except for a set of measure zero, and any nonzero (complex) values of the unspecified entries, the corresponding system is controllable. We highlight that this notion generalizes the generic property embedded in the conventional structural controllability for single-input systems. We then give algebraic and (bipartite) graph-theoretic necessary and sufficient conditions for single-input systems to be PSSC. Conditions for multi-input systems are subsequently given for a particular case. We also extend our results to the case where the unspecified entries can take either nonzero values or zero/nonzero values. Finally, we show the established results can induce a new graph-theoretic criterion for SSC in maximum matchings over the system bipartite graph representations.
This paper presents conditions for establishing topological controllability in undirected networks of diffusively coupled agents. Specifically, controllability is considered based on the signs of the edges (negative, positive or zero). Our approach differs from well-known structural controllability conditions for linear systems or consensus networks, where controllability conditions are based on edge connectivity (i.e., zero or nonzero edges). Our results first provide a process for merging controllable graphs into a larger controllable graph. Then, based on this process, we provide a graph decomposition process for evaluating the topological controllability of a given network.
In this paper, we consider a network of agents with Laplacian dynamics, and study the problem of improving network robustness by adding a maximum number of edges within the network while preserving a lower bound on its strong structural controllability (SSC) at the same time. Edge augmentation increases networks robustness to noise and structural changes, however, it could also deteriorate network controllability. Thus, by exploiting relationship between network controllability and distances between nodes in graphs, we formulate an edge augmentation problem with a constraint to preserve distances between certain node pairs, which in turn guarantees that a lower bound on SSC is maintained even after adding edges. In this direction, first we choose a node pair and maximally add edges while maintaining the distance between selected nodes. We show that an optimal solution belongs to a certain class of graphs called clique chains. Then, we present an algorithm to add edges while preserving distances between a certain collection of nodes. Further, we present a randomized algorithm that guarantees a desired approximation ratio with high probability to solve the edge augmentation problem. Finally, we evaluate our results on various networks.
This paper investigates several cost-sparsity induced optimal input selection problems for structured systems. Given are an autonomous system and a prescribed set of input links, where each input link has a non-negative cost. The problems include selecting the minimum cost of input links, and selecting the input links with the smallest possible cost with a bound on their cardinality, all to ensure system structural controllability. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the former problem is polynomially solvable by some graph-theoretic algorithms, while the general nontrivial constrained case is largely unexploited. We show these problems can be formulated as equivalent integer linear programming (ILP) problems. Subject to a certain condition on the prescribed input configurations that contains the dedicated input one as a special case, we demonstrate that the constraint matrices of these ILPs are totally unimodular. This property allows us to solve those ILPs efficiently simply via their linear programming (LP) relaxations, leading to a unifying algebraic method for these problems with polynomial time complexity. It is further shown those problems could be solved in strongly polynomial time, independent of the size of the costs and cardinality bounds. Finally, an example is provided to illustrate the power of the proposed method.
This paper develops tools to quantify the importance of agent interactions and its impact on global performance metrics for networks modeled as linear time-invariant systems. We consider Gramian-based performance metrics and propose a novel notion of edge centrality that encodes the first-order variation in the metric with respect to the modification of the corresponding edge weight, including for those edges not present in the network. The proposed edge centrality matrix (ECM) is additive over the set of inputs, i.e., it captures the specific contribution to each edges centrality of the presence of any given actuator. We provide a full characterization of the ECM structure for the class of directed stem-bud networks, showing that non-zero entries are only possible at specific sub/super-diagonals determined by the network size and the length of its bud. We also provide bounds on the value of the trace, trace inverse, and log-det of the Gramian before and after single-edge modifications, and on the edge-modification weight to ensure the modified network retains stability. Simulations show the utility of the proposed edge centrality notion and validate our results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا