No Arabic abstract
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly structurally controllable (SSC), if for any nonzero values of the indeterminate entries, the corresponding system is controllable. This paper introduces a new controllability notion, termed partial strong structural controllability (PSSC), which naturally extends SSC and bridges the gap between structural controllability and SSC. Dividing the indeterminate entries into two categories, generic entries and unspecified entries, a system is PSSC, if for almost all values of the generic entries in the parameter space except for a set of measure zero, and any nonzero (complex) values of the unspecified entries, the corresponding system is controllable. We highlight that this notion generalizes the generic property embedded in the conventional structural controllability for single-input systems. We then give algebraic and (bipartite) graph-theoretic necessary and sufficient conditions for single-input systems to be PSSC. Conditions for multi-input systems are subsequently given for a particular case. We also extend our results to the case where the unspecified entries can take either nonzero values or zero/nonzero values. Finally, we show the established results can induce a new graph-theoretic criterion for SSC in maximum matchings over the system bipartite graph representations.
In this paper, we consider a network of agents with Laplacian dynamics, and study the problem of improving network robustness by adding a maximum number of edges within the network while preserving a lower bound on its strong structural controllability (SSC) at the same time. Edge augmentation increases networks robustness to noise and structural changes, however, it could also deteriorate network controllability. Thus, by exploiting relationship between network controllability and distances between nodes in graphs, we formulate an edge augmentation problem with a constraint to preserve distances between certain node pairs, which in turn guarantees that a lower bound on SSC is maintained even after adding edges. In this direction, first we choose a node pair and maximally add edges while maintaining the distance between selected nodes. We show that an optimal solution belongs to a certain class of graphs called clique chains. Then, we present an algorithm to add edges while preserving distances between a certain collection of nodes. Further, we present a randomized algorithm that guarantees a desired approximation ratio with high probability to solve the edge augmentation problem. Finally, we evaluate our results on various networks.
We study the strong structural controllability (SSC) of diffusively coupled networks, where the external control inputs are injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong structurally controllable subspace, which is equal to the smallest possible rank of controllability matrix under admissible (positive) coupling weights. In this paper, we compare two tight lower bounds on the dimension of strong structurally controllable subspace: one based on the distances of followers to leaders, and the other based on the graph coloring process known as zero forcing. We show that the distance-based lower bound is usually better than the zero-forcing-based bound when the leaders do not constitute a zero-forcing set. On the other hand, we also show that any set of leaders that can be shown to achieve complete SSC via the distance-based bound is necessarily a zero-forcing set. These results indicate that while the zero-forcing based approach may be preferable when the focus is only on verifying complete SSC, the distance-based approach is usually more informative when partial SSC is also of interest. Furthermore, we also present a novel bound based on the combination of these two approaches, which is always at least as good as, and in some cases strictly greater than, the maximum of the two bounds. We support our analysis with numerical results for various graphs and leader sets.
In the interaction between control and mathematics, mathematical tools are fundamental for all the control methods, but it is unclear how control impacts mathematics. This is the first part of our paper that attempts to give an answer with focus on solving linear algebraic equations (LAEs) from the perspective of systems and control, where it mainly introduces the controllability-based design results. By proposing an iterative method that integrates a learning control mechanism, a class of tracking problems for iterative learning control (ILC) is explored for the problem solving of LAEs. A trackability property of ILC is newly developed, by which analysis and synthesis results are established to disclose the equivalence between the solvability of LAEs and the controllability of discrete control systems. Hence, LAEs can be solved by equivalently achieving the perfect tracking tasks of resulting ILC systems via the classic state feedback-based design and analysis methods. It is shown that the solutions for any solvable LAE can all be calculated with different selections of the initial input. Moreover, the presented ILC method is applicable to determining all the least squares solutions of any unsolvable LAE. In particular, a deadbeat design is incorporated to ILC such that the solving of LAEs can be completed within finite iteration steps. The trackability property is also generalized to conventional two-dimensional ILC systems, which creates feedback-based methods, instead of the common used contraction mapping-based methods, for the design and convergence analysis of ILC.
This paper investigates several cost-sparsity induced optimal input selection problems for structured systems. Given are an autonomous system and a prescribed set of input links, where each input link has a non-negative cost. The problems include selecting the minimum cost of input links, and selecting the input links with the smallest possible cost with a bound on their cardinality, all to ensure system structural controllability. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the former problem is polynomially solvable by some graph-theoretic algorithms, while the general nontrivial constrained case is largely unexploited. We show these problems can be formulated as equivalent integer linear programming (ILP) problems. Subject to a certain condition on the prescribed input configurations that contains the dedicated input one as a special case, we demonstrate that the constraint matrices of these ILPs are totally unimodular. This property allows us to solve those ILPs efficiently simply via their linear programming (LP) relaxations, leading to a unifying algebraic method for these problems with polynomial time complexity. It is further shown those problems could be solved in strongly polynomial time, independent of the size of the costs and cardinality bounds. Finally, an example is provided to illustrate the power of the proposed method.
This paper deals with strong structural controllability of linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. Instead of assuming that the nonzero and arbitrary entries of the system matrices can take their values completely independently, this paper allows equality constraints on these entries, in the sense that {em a priori} given entries in the system matrices are restricted to take arbitrary but identical values. To formalize this general class of structured systems, we introduce the concepts of colored pattern matrices and colored structured systems. The main contribution of this paper is that it generalizes both the classical results on strong structural controllability of structured systems as well as recent results on controllability of systems defined on colored graphs. In this paper, we will establish both algebraic and graph-theoretic conditions for strong structural controllability of this more general class of structured systems.