No Arabic abstract
Building Management Systems (BMS) are crucial in the drive towards smart sustainable cities. This is due to the fact that they have been effective in significantly reducing the energy consumption of buildings. A typical BMS is composed of smart devices that communicate with one another in order to achieve their purpose. However, the heterogeneity of these devices and their associated meta-data impede the deployment of solutions that depend on the interactions among these devices. Nonetheless, automatically inferring the semantics of these devices using data-driven methods provides an ideal solution to the problems brought about by this heterogeneity. In this paper, we undertake a multi-dimensional study to address the problem of inferring the semantics of IoT devices using machine learning models. Using two datasets with over 67 million data points collected from IoT devices, we developed discriminative models that produced competitive results. Particularly, our study highlights the potential of Image Encoded Time Series (IETS) as a robust alternative to statistical feature-based inference methods. Leveraging just a fraction of the data required by feature-based methods, our evaluations show that this encoding competes with and even outperforms traditional methods in many cases.
Owing to the call for energy efficiency, the need to optimize the energy consumption of commercial buildings-- responsible for over 40% of US energy consumption--has recently gained significant attention. Moreover, the ability to participate in the retail electricity markets through proactive demand-side participation has recently led to development of economic model predictive control (EMPC) for buildings Heating, Ventilation, and Air Conditioning (HVAC) system. The objective of this paper is to develop a price-sensitive operational model for buildings HVAC systems while considering inflexible loads and other distributed energy resources (DERs) such as photovoltaic (PV) generation and battery storage for the buildings. A Nonlinear Economic Model Predictive Controller (NL-EMPC) is presented to minimize the net cost of energy usage by buildings HVAC system while satisfying the comfort-level of buildings occupants. The efficiency of the proposed NL-EMPC controller is evaluated using several simulation case studies.
Manually checking models for compliance against building regulation is a time-consuming task for architects and construction engineers. There is thus a need for algorithms that process information from construction projects and report non-compliant elements. Still automated code-compliance checking raises several obstacles. Building regulations are usually published as human readable texts and their content is often ambiguous or incomplete. Also, the vocabulary used for expressing such regulations is very different from the vocabularies used to express Building Information Models (BIM). Furthermore, the high level of details associated to BIM-contained geometries induces complex calculations. Finally, the level of complexity of the IFC standard also hinders the automation of IFC processing tasks. Model chart, formal rules and pre-processors approach allows translating construction regulations into semantic queries. We further demonstrate the usefulness of this approach through several use cases. We argue our approach is a step forward in bridging the gap between regulation texts and automated checking algorithms. Finally with the recent building ontology BOT recommended by the W3C Linked Building Data Community Group, we identify perspectives for standardizing and extending our approach.
As buildings are central to the social and environmental sustainability of human settlements, high-quality geospatial data are necessary to support their management and planning. Authorities around the world are increasingly collecting and releasing such data openly, but these are mostly disconnected initiatives, making it challenging for users to fully leverage their potential for urban sustainability. We conduct a global study of 2D geospatial data on buildings that are released by governments for free access, ranging from individual cities to whole countries. We identify and benchmark more than 140 releases from 28 countries containing above 100 million buildings, based on five dimensions: accessibility, richness, data quality, harmonisation, and relationships with other actors. We find that much building data released by governments is valuable for spatial analyses, but there are large disparities among them and not all instances are of high quality, harmonised, and rich in descriptive information. Our study also compares authoritative data to OpenStreetMap, a crowdsourced counterpart, suggesting a mutually beneficial and complementary relationship.
Developing nations are particularly susceptible to the adverse effects of global warming. By 2040, 14 percent of global emissions will come from data centers. This paper presents early findings in the use AI and digital twins to model and optimize data center operations.
We argue that there is a hierarchy of levels describing to that particular level relevant features of reality behind the content and behavior of blockchain and smart contracts in their realistic deployment. Choice, design, audit and legal control of these systems could be more informed, easier and raised to a higher level, if research on foundations of these descriptions develops and sets the formalisms, tools and standards for such descriptions.