Do you want to publish a course? Click here

Old Dualities and New Anomalies

57   0   0.0 ( 0 )
 Added by Roberto Bonezzi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We revisit the question whether the worldsheet theory of a string admits a global O(d,d) symmetry. We consider the truncation of the target space theory in which fields are independent of d coordinates, which is O(d,d,R) invariant. The worldsheet theory is not O(d,d,R) invariant, unless it is truncated by setting winding and center-of-mass momenta to zero. We prove consistency of this truncation and give a manifestly O(d,d,R) invariant action, generalizing a formulation due to Tseytlin by including all external and internal target space fields. It is shown that, due to chiral bosons, this symmetry is anomalous. The anomaly is cancelled by a Green-Schwarz mechanism that utilizes the external B-field.



rate research

Read More

Aspects of three dimensional $mathcal{N}=2$ gauge theories with monopole superpotentials and their dualities are investigated. The moduli spaces of a number of such theories are studied using Hilbert series. Moreover, we propose new dualities involving quadratic powers for the monopole superpotentials, for unitary, symplectic and orthogonal gauge groups. These dualities are then tested using the three sphere partition function and matching of the Hilbert series. We also provide an argument for the obstruction to the duality for theories with quartic monopole superpotentials.
We determine the general structure of quantum anomalies for the $R$-multiplet of four dimensional $mathcal{N}=1$ supersymmetric quantum field theories in the presence of background fields for an arbitrary number of Abelian flavor multiplets. By solving the Wess-Zumino consistency conditions for off-shell new minimal supergravity in four dimensions with an arbitrary number of Abelian vector multiplets, we compute the anomaly in the conservation of the supercurrent to leading non trivial order in the gravitino and vector multiplet fermions. We find that both $R$-symmetry and flavor anomalies necessarily lead to a supersymmetry anomaly, thus generalizing our earlier results to non superconformal theories with Abelian flavor symmetries. The anomaly in the conservation of the supercurrent leads to an anomalous transformation for the supercurrent under rigid supersymmetry on bosonic backgrounds that admit new minimal Killing spinors. The resulting deformation of the supersymmetry algebra has implications for supersymmetric localization computations on such backgrounds.
We use the superspace formulation of supergravity in eleven and ten dimensions to compute fermion couplings on the M2-brane and on D$p$-branes. In this formulation fermionic couplings arise naturally from the $theta$-expansion of the superfields from which the brane actions are constructed. The techniques we use and develop can in principle be applied to determine the fermionic couplings to general background fields up to arbitrary order. Starting with the superspace formulation of 11-dimensional supergravity, we use a geometric technique known as the `normal coordinate method to obtain the $theta$-expansion of the M2-brane action. We then present a method which allows us to translate the knowledge of fermionic couplings on the M2-brane to knowledge of such couplings on the D2-brane, and then to any D$p$-brane. This method is based on superspace generalizations of both the compactification taking 11-dimensional supergravity to type IIA supergravity and the T-duality rules connecting the type IIA and type IIB supergravities.
73 - K. Koepsell , F. Roose 2002
We present a novel global E_7(7) symmetry in five-dimensional maximal supergravity as well as an E_8(8) symmetry in d=4. These symmetry groups which are known to be present after reduction to d=4 and d=3, respectively, appear as conformal extensions of the respective well-known hidden-symmetry groups. A global scaling symmetry of the Lagrangian is the key to enhancement of E_6(6) to E_7(7) in d=5 and E_7(7) to E_8(8) in d=4. The group action on the physical fields is induced by conformal transformations in auxiliary spaces of dimensions 27 and 56, respectively. The construction is analogous to the one where the conformal group of Minkowski space acts on the boundary of AdS_5 space. A geometrical picture underlying the action of these ``conformal duality groups is given.
Working within the path-integral framework we first establish a duality between the partion functions of two $U(1)$ gauge theories with a theta term in $d=4$ space-time dimensions. Then, after a dimensional reduction to $d=3$ dimensions we arrive to the partition function of a $U(1)$ gauge theory coupled to a scalar field with an action that exhibits a Dirac monopole solution. A subsequent reduction to $d=2$ dimensions leads to the partition function of a theory in which the gauge field decouples from two scalars which have non-trivial vortex-like solutions. Finally this $d=2$ partition function can be related to the bosonized version of the two-dimensional QED$_2$ (Schwinger) model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا