Do you want to publish a course? Click here

Look here! A parametric learning based approach to redirect visual attention

49   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Across photography, marketing, and website design, being able to direct the viewers attention is a powerful tool. Motivated by professional workflows, we introduce an automatic method to make an image region more attention-capturing via subtle image edits that maintain realism and fidelity to the original. From an input image and a user-provided mask, our GazeShiftNet model predicts a distinct set of global parametric transformations to be applied to the foreground and background image regions separately. We present the results of quantitative and qualitative experiments that demonstrate improvements over prior state-of-the-art. In contrast to existing attention shifting algorithms, our global parametric approach better preserves image semantics and avoids typical generative artifacts. Our edits enable inference at interactive rates on any image size, and easily generalize to videos. Extensions of our model allow for multi-style edits and the ability to both increase and attenuate attention in an image region. Furthermore, users can customize the edited images by dialing the edits up or down via interpolations in parameter space. This paper presents a practical tool that can simplify future image editing pipelines.



rate research

Read More

Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose DELIUS: a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model, where the task of mapping the raw input data to a latent space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. DELIUS can be useful for several tasks related to art analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.
Current deep learning based autonomous driving approaches yield impressive results also leading to in-production deployment in certain controlled scenarios. One of the most popular and fascinating approaches relies on learning vehicle controls directly from data perceived by sensors. This end-to-end learning paradigm can be applied both in classical supervised settings and using reinforcement learning. Nonetheless the main drawback of this approach as also in other learning problems is the lack of explainability. Indeed, a deep network will act as a black-box outputting predictions depending on previously seen driving patterns without giving any feedback on why such decisions were taken. While to obtain optimal performance it is not critical to obtain explainable outputs from a learned agent, especially in such a safety critical field, it is of paramount importance to understand how the network behaves. This is particularly relevant to interpret failures of such systems. In this work we propose to train an imitation learning based agent equipped with an attention model. The attention model allows us to understand what part of the image has been deemed most important. Interestingly, the use of attention also leads to superior performance in a standard benchmark using the CARLA driving simulator.
Visual attention in Visual Question Answering (VQA) targets at locating the right image regions regarding the answer prediction. However, recent studies have pointed out that the highlighted image regions from the visual attention are often irrelevant to the given question and answer, leading to model confusion for correct visual reasoning. To tackle this problem, existing methods mostly resort to aligning the visual attention weights with human attentions. Nevertheless, gathering such human data is laborious and expensive, making it burdensome to adapt well-developed models across datasets. To address this issue, in this paper, we devise a novel visual attention regularization approach, namely AttReg, for better visual grounding in VQA. Specifically, AttReg firstly identifies the image regions which are essential for question answering yet unexpectedly ignored (i.e., assigned with low attention weights) by the backbone model. And then a mask-guided learning scheme is leveraged to regularize the visual attention to focus more on these ignored key regions. The proposed method is very flexible and model-agnostic, which can be integrated into most visual attention-based VQA models and require no human attention supervision. Extensive experiments over three benchmark datasets, i.e., VQA-CP v2, VQA-CP v1, and VQA v2, have been conducted to evaluate the effectiveness of AttReg. As a by-product, when incorporating AttReg into the strong baseline LMH, our approach can achieve a new state-of-the-art accuracy of 59.92% with an absolute performance gain of 6.93% on the VQA-CP v2 benchmark dataset. In addition to the effectiveness validation, we recognize that the faithfulness of the visual attention in VQA has not been well explored in literature. In the light of this, we propose to empirically validate such property of visual attention and compare it with the prevalent gradient-based approaches.
This paper proposes a novel simultaneous localization and mapping (SLAM) approach, namely Attention-SLAM, which simulates human navigation mode by combining a visual saliency model (SalNavNet) with traditional monocular visual SLAM. Most SLAM methods treat all the features extracted from the images as equal importance during the optimization process. However, the salient feature points in scenes have more significant influence during the human navigation process. Therefore, we first propose a visual saliency model called SalVavNet in which we introduce a correlation module and propose an adaptive Exponential Moving Average (EMA) module. These modules mitigate the center bias to enable the saliency maps generated by SalNavNet to pay more attention to the same salient object. Moreover, the saliency maps simulate the human behavior for the refinement of SLAM results. The feature points extracted from the salient regions have greater importance in optimization process. We add semantic saliency information to the Euroc dataset to generate an open-source saliency SLAM dataset. Comprehensive test results prove that Attention-SLAM outperforms benchmarks such as Direct Sparse Odometry (DSO), ORB-SLAM, and Salient DSO in terms of efficiency, accuracy, and robustness in most test cases.
Deep Learning based techniques have been adopted with precision to solve a lot of standard computer vision problems, some of which are image classification, object detection and segmentation. Despite the widespread success of these approaches, they have not yet been exploited largely for solving the standard perception related problems encountered in autonomous navigation such as Visual Odometry (VO), Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM). This paper analyzes the problem of Monocular Visual Odometry using a Deep Learning-based framework, instead of the regular feature detection and tracking pipeline approaches. Several experiments were performed to understand the influence of a known/unknown environment, a conventional trackable feature and pre-trained activations tuned for object classification on the networks ability to accurately estimate the motion trajectory of the camera (or the vehicle). Based on these observations, we propose a Convolutional Neural Network architecture, best suited for estimating the objects pose under known environment conditions, and displays promising results when it comes to inferring the actual scale using just a single camera in real-time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا