No Arabic abstract
Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal invariant momenta. In this work, we show that all achiral non-centrosymmetric materials with SOC can be a new class of topological materials, which we term Kramers nodal line metals (KNLMs). In KNLMs, there are doubly degenerate lines, which we call Kramers nodal lines (KNLs), connecting time-reversal invariant momenta. The KNLs create two types of Fermi surfaces, namely, the spindle torus type and the octdong type. Interestingly, all the electrons on octdong Fermi surfaces are described by two-dimensional massless Dirac Hamiltonians. These materials support quantized optical conductance in thin films. We further show that KNLMs can be regarded as parent states of KWSs. Therefore, we conclude that all non-centrosymmetric metals with SOC are topological, as they can be either KWSs or KNLMs.
For three-dimensional metals, Landau levels disperse as a function of the magnetic field and the momentum wavenumber parallel to the field. In this two-dimensional parameter space, it is shown that two conically-dispersing Landau levels can touch at a diabolical point -- a Landau-Dirac point. The conditions giving rise to Landau-Dirac points are shown to be magnetic breakdown (field-induced quantum tunneling) and certain crystallographic spacetime symmetry. Both conditions are realizable in topological nodal-line metals, as we exemplify with CaP$_3$. A Landau-Dirac point reveals itself in anomalous batman-like peaks in the magnetoresistance, as well as in the onset of optical absorption linearly evolving to zero frequency as a function of the field magnitude/orientation.
Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Neel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Neel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. Here, we predict that room temperature AFM metal MnPd$_{2}$ allows the electrical control of the Dirac nodal line by the Neel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Neel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Neel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd$_{2}$ represents a promising material for topological AFM spintronics.
By means of first-principles calculations and modeling analysis, we have predicted that the traditional 2D-graphene hosts the topological phononic Weyl-like points (PWs) and phononic nodal line (PNL) in its phonon spectrum. The phonon dispersion of graphene hosts three type-I PWs (both PW1 and PW2 at the BZ corners emph{K} and emph{K}, and PW3 locating along the $Gamma$-emph{K} line), one type-II PW4 locating along the $Gamma$-emph{M} line, and one PNL surrounding the centered $Gamma$ point in the $q_{x,y}$ plane. The calculations further reveal that Berry curvatures are vanishingly zero throughout the whole BZ, except for the positions of these four pairs of Weyl-like phonons, at which the non-zero singular Berry curvatures appear with the Berry phase of $pi$ or -$pi$, confirming its topological non-trivial nature. The topologically protected non-trivial phononic edge states have been also evidenced along both the zigzag-edged and armchair-edged boundaries. These results would pave the ways for further studies of topological phononic properties of graphene, such as phononic destructive interference with a suppression of backscattering and intrinsic phononic quantum Hall-like effects.
Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly in Dirac nodal line semimetals induced by lattice vibrations, and establish a topological piezoelectric effect; i.e., periodic lattice deformations generate topological Hall currents that are transverse to the deformation field. The currents induced by this piezoelectric effect are dissipationless and their magnitude is completely determined by the length of the nodal ring, leading to a semi-quantized transport coefficient. Our theoretical proposal can be experimentally realized in various nodal line semimetals, such as CaAgP and Ca$_{_3}$P${_2}$.
We present a model of a topological semimetal in three dimensions (3D) whose energy spectrum exhibits a nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke ring. Contrary to a Weyl point node spectrum, the vortex ring gives rise to skyrmionic pseudospin patterns in cuts on both sides of the nodal ring plane; this pattern covers the full Brillouin zone, thus leading to a new, `maximal, anomalous Hall effect in a 3D semimetal. Tuning a model parameter shrinks the vortex ring until it vanishes, giving way to a pair of Weyl nodes of opposite chirality. This establishes a connection between two distinct momentum-space topologies - that of a vortex ring (a circle of singularity) and a monopole-anti-monopole pair (two point singularities). We present the model both as a low-energy continuum and a two-band tight-binding lattice model. Its simplicity permits an analytical computation of its Landau level spectrum.