Do you want to publish a course? Click here

Topological piezoelectric effect and parity anomaly in nodal line semimetals

437   0   0.0 ( 0 )
 Added by Taiki Matsushita
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly in Dirac nodal line semimetals induced by lattice vibrations, and establish a topological piezoelectric effect; i.e., periodic lattice deformations generate topological Hall currents that are transverse to the deformation field. The currents induced by this piezoelectric effect are dissipationless and their magnitude is completely determined by the length of the nodal ring, leading to a semi-quantized transport coefficient. Our theoretical proposal can be experimentally realized in various nodal line semimetals, such as CaAgP and Ca$_{_3}$P${_2}$.



rate research

Read More

Nodal-line semimetals are topological semimetals characterized by one-dimensional band-touching loops protected by the combined symmetry of inversion $mathcal{P}$ and time-reversal $mathcal{T}$ in absence of spin-orbit coupling. These nodal loops can be understood as a one-parameter family of Dirac points exhibiting the parity anomaly associated to $mathcal{P}*mathcal{T}$ symmetry. We find that the parity anomaly also appears in the non-linear optical response of these systems in an analogous way to the linear response transport. We analyze the presence of a tilting term in the Hamiltonian as an element that does not spoil $mathcal{P}*mathcal{T}$ symmetry: while it is $mathcal{P}*mathcal{T}$-symmetric, it breaks separately both $mathcal{P}$ and $mathcal{T}$ symmetries, allowing for the potential experimental observability of the linear and non-linear Hall conductivities in appropriate nodal-line semimetals.
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone, and any perturbation that preserves a certain symmetry group (generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands. The nodal line(s) is hence topologically protected by the symmetry group, and can be associated with a topological invariant. In this Review, (i) we enumerate the symmetry groups that may protect a topological nodal line; (ii) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface, establishing a topological classification; (iii) for certain classes, we review the proposals for the realization of these semimetals in real materials and (iv) we discuss different scenarios that when the protecting symmetry is broken, how a topological nodal line semimetal becomes Weyl semimetals, Dirac semimetals and other topological phases and (v) we discuss the possible physical effects accessible to experimental probes in these materials.
Superconducting Weyl semimetals present a novel and promising system to harbor new forms of unconventional topological superconductivity. Within the context of time-reversal symmetric Weyl semimetals with $d$-wave superconductivity, we demonstrate that the number of Majorana cones equates to the number of intersections between the $d$-wave nodal lines and the Fermi arcs. We illustrate the importance of nodal line-arc intersections by demonstrating the existence of locally stable surface Majorana cones that the winding number does not predict. The discrepancy between Majorana cones and the winding number necessitates an augmentation of the winding number formulation to account for each intersection. In addition, we show that imposing additional mirror symmetries globally protect the nodal line-arc intersections and the corresponding Majorana cones.
We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared with TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands touch at discrete points, in these new TSMs the two bands cross at closed lines in the Brillouin zone. We propose two new classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by the combination of inversion symmetry and time-reversal symmetry; yet unlike any previously studied nodal lines in the same symmetry class, each nodal line has a $Z_2$ monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.
197 - Jiangxu Li , Lei Wang , Jiaxi Liu 2019
By means of first-principles calculations and modeling analysis, we have predicted that the traditional 2D-graphene hosts the topological phononic Weyl-like points (PWs) and phononic nodal line (PNL) in its phonon spectrum. The phonon dispersion of graphene hosts three type-I PWs (both PW1 and PW2 at the BZ corners emph{K} and emph{K}, and PW3 locating along the $Gamma$-emph{K} line), one type-II PW4 locating along the $Gamma$-emph{M} line, and one PNL surrounding the centered $Gamma$ point in the $q_{x,y}$ plane. The calculations further reveal that Berry curvatures are vanishingly zero throughout the whole BZ, except for the positions of these four pairs of Weyl-like phonons, at which the non-zero singular Berry curvatures appear with the Berry phase of $pi$ or -$pi$, confirming its topological non-trivial nature. The topologically protected non-trivial phononic edge states have been also evidenced along both the zigzag-edged and armchair-edged boundaries. These results would pave the ways for further studies of topological phononic properties of graphene, such as phononic destructive interference with a suppression of backscattering and intrinsic phononic quantum Hall-like effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا