The polytropic (adiabatic) index for pure hydrogen plasma is analytically calculated as function of reciprocal temperature and degree of ionization. Additionally, the polytropic index is graphically represented as a function of temperature and density. It is concluded that the partially ionized hydrogen plasma cannot be exactly polytropic. The calculated deviations from the mono-atomic value 5/3 are measurable. The analytical result for pure hydrogen plasma is a test example how this approach can be extended for arbitrary gas cocktail.
Observations of slow magneto-acoustic waves have been demonstrated to possess a number of applications in coronal seismology. Determination of the polytropic index ($gamma$) is one such important application. Analysing the amplitudes of oscillations in temperature and density corresponding to a slow magneto-acoustic wave, the polytropic index in the solar corona has been calculated and based on the obtained value it has been inferred that thermal conduction is highly suppressed in a very hot loop in contrast to an earlier report of high thermal conduction in a relatively colder loop. In this study, using SDO/AIA data, we analysed slow magneto-acoustic waves propagating along sunspot fan loops from 30 different active regions and computed polytropic indices for several loops at multiple spatial positions. The obtained $gamma$ values vary from 1.04$pm$0.01 to 1.58$pm$0.12 and most importantly display a temperature dependence indicating higher $gamma$ at hotter temperatures. This behaviour brings both the previous studies to agreement and perhaps implies a gradual suppression of thermal conduction with increase in temperature of the loop. The observed phase shifts between temperature and density oscillations, however, are substantially larger than that expected from a classical thermal conduction and appear to be influenced by a line-of-sight integration effect on the emission measure.
Hot stars emit large amounts of X-rays, which are assumed to originate in the supersonic stellar wind. Part of the emitted X-rays is subsequently absorbed in the wind and influences its ionization state. Because hot star winds are driven radiatively, the modified ionization equilibrium affects the radiative force. We review the recent progress in modelling the influence of X-rays on the radiative equilibrium and on the radiative force. We focus particularly on single stars with X-rays produced in wind shocks and on binaries with massive components, which belong to the most luminous objects in X-rays.
In the work described here we investigate atomic processes leading to the formation of emission lines within the IRIS wavelength range at temperatures near $10^5$~K. We focus on (1) non-equilibrium and (2) density-dependent effects influencing the formation and radiative properties of S IV and O IV. These two effects have significant impacts on spectroscopic diagnostic measurements of quantities associated with the plasma that emission lines from S IV and O IV provide. We demonstrate this by examining nanoflare-based coronal heating to determine what the detectable signatures are in transition region emission. A detailed comparison between predictions from numerical experiments and several sets of observational data is presented to show how one can ascertain when non-equilibrium ionization and/or density-dependent atomic processes are important for diagnosing nanoflare properties, the magnitude of their contribution, and what information can be reliably extracted from the spectral data. Our key findings are the following. (1) The S/O intensity ratio is a powerful diagnostic of non-equilibrium ionization. (2) Non-equilibrium ionization has a strong effect on the observed line intensities even in the case of relatively weak nanoflare heating. (3) The density-dependence of atomic rate coefficients is only important when the ion population is out of equilibrium. (4) In the sample of active regions we examined, weak nanoflares coupled with non-equilibrium ionization and density-dependent atomic rates were required to explain the observed properties (e.g. the S/O intensity ratios). (5) Enhanced S/O intensity ratios cannot be due solely to the heating strength and must depend on other processes (e.g. heating frequency, non-Maxwellian distributions).
We performed the non-local thermodynamic equilibrium (non-LTE) calculations for Ti I-II with the updated model atom that includes quantum-mechanical rate coefficients for inelastic collisions with hydrogen atoms. We have calculated for the first time the rate coefficients for bound-bound transitions in inelastic collisions of titanium atoms and ions with hydrogen atoms and for the charge-exchange processes: Ti I + H <-> Ti II + H- and Ti II + H <-> Ti III + H-. The influence of these data on non-LTE abundance determinations has been tested for the Sun and four metal-poor stars. For Ti I and Ti II, the application of the derived rate coefficients has led to an increase in the departures from LTE and an increase in the titanium abundance compared to that, obtained with approximate formulas for the rate coefficients. In metal-poor stars, we have failed to achieve consistent non-LTE abundances from lines of two ionization stages. The known in the literature discrepancy in the non-LTE abundances from Ti I and Ti II lines in metal-poor stars cannot be solved by improvement of the rates of inelastic processes in collisions with hydrogen atoms in non-LTE calculations with classical model atmospheres.
The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved regions of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature-dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature making it a valuable candidate for the implementation of hydrogen-storage devices.
Todor M. Mishonov
,Iglika M. Dimitrova
,Albert M. Varonov
.
(2020)
.
"On the Influence of the Ionization-Recombination Processes on Hydrogen Plasma Polytropic Index"
.
Todor M. Mishonov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا