Do you want to publish a course? Click here

Influence of Collisions with Hydrogen on Titanium Abundance Determinations in Cool Stars

296   0   0.0 ( 0 )
 Added by Tatyana M. Sitnova
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed the non-local thermodynamic equilibrium (non-LTE) calculations for Ti I-II with the updated model atom that includes quantum-mechanical rate coefficients for inelastic collisions with hydrogen atoms. We have calculated for the first time the rate coefficients for bound-bound transitions in inelastic collisions of titanium atoms and ions with hydrogen atoms and for the charge-exchange processes: Ti I + H <-> Ti II + H- and Ti II + H <-> Ti III + H-. The influence of these data on non-LTE abundance determinations has been tested for the Sun and four metal-poor stars. For Ti I and Ti II, the application of the derived rate coefficients has led to an increase in the departures from LTE and an increase in the titanium abundance compared to that, obtained with approximate formulas for the rate coefficients. In metal-poor stars, we have failed to achieve consistent non-LTE abundances from lines of two ionization stages. The known in the literature discrepancy in the non-LTE abundances from Ti I and Ti II lines in metal-poor stars cannot be solved by improvement of the rates of inelastic processes in collisions with hydrogen atoms in non-LTE calculations with classical model atmospheres.



rate research

Read More

In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron, where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been developed, which includes hydrogen collisions for excitation, ionization and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star {alpha} Cen A and the metal-poor star HD140283.
132 - C. Abia , K. Cunha , S. Cristallo 2011
Fluorine (19F) abundances (or upper limits) are derived in six extragalactic AGB carbon stars from the HF(1-0) R9 line at 2.3358 mu in high resolution spectra. The stars belong to the Local Group galaxies LMC, SMC and Carina dwarf spheroidal, spanning more than a factor 50 in metallicity. This is the first study to probe the behaviour of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F-enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low mass, low metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.
Data for inelastic processes due to hydrogen atom collisions with manganese and titanium are needed for accurate modeling of the corresponding spectra in late-type stars. In this work excitation and charge transfer in low-energy Mn+H and Ti+H collisions have been studied theoretically using a method based on an asymptotic two-electron linear combination of an atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model to treat the dynamics. Extensive calculations of charge transfer (mutual neutralization, ion-pair production), excitation and de-excitation processes in the two collisional systems are carried out for all transitions between covalent states dissociating to energies below the first ionic limit and the dominating ionic states. Rate coefficients are determined for temperatures in the range 1000 - 20 000 K in steps of 1000 K. Like for earlier studies of other atomic species, charge transfer processes are found to lead to much larger rate coefficients than excitation processes.
We perform the non-local thermodynamic equilibrium (NLTE) calculations for Ca I-II with the updated model atom that includes new quantum-mechanical rate coefficients for Ca I + H I collisions from two recent studies, that is, by Barklem and by Mitrushchenkov, Guitou, Belyaev, Yakovleva, Spielfiedel, and Feautrier, and investigate the accuracy of calcium abundance determinations using the Sun, Procyon, and five metal-poor (MP) stars with well-determined stellar parameters. We show that both collisional recipes lead to very similar NLTE results. When using the subordinate lines of Ca I and the high-excitation lines of Ca II, NLTE provides the smaller line-to-line scatter compared with the LTE case for each star. For Procyon, NLTE removes a steep trend with line strength among strong Ca I lines seen in LTE and leads to consistent [Ca/H] abundances from the two ionisation stages. In the MP stars, the NLTE abundance from Ca II 8498 A agrees well with that from the Ca I subordinate lines. NLTE largely removes abundance discrepancies between the high-excitation lines of Ca I and Ca II 8498 A obtained for our four [Fe/H] < -2 stars under the LTE assumption. We investigate the formation of the Ca I resonance line in the [Fe/H] < -2 stars. Consistent NLTE abundances from the Ca I resonance line and the Ca II lines are found for two hyper metal-poor stars HE0107-5240 and HE1327-2326. We provide the NLTE abundance corrections for 28 lines of Ca I in a grid of model atmospheres suitable for abundance analysis of FGK-type dwarfs and subgiants.
64 - Gajendra Pandey 2001
Extreme helium stars (EHe) with effective temperatures from 8000K to 13000K are among the coolest EHe stars and overlap the hotter R CrB stars in effective temperature. The cool EHes may represent an evolutionary link between the hot EHes and the R CrBs. Abundance analyses of four cool EHes are presented. To test for an evolutionary connection, the chemical compositions of cool EHes are compared with those of hot EHes and R CrBs. Relative to Fe, the N abundance of these stars is intermediate between those of hot EHes and R CrBs. For the R CrBs, the metallicity M derived from the mean of Si and S appears to be more consistent with the kinematics than that derived from Fe. When metallicity M derived from Si and S replaces Fe, the observed N abundances of EHes and R CrBs fall at or below the upper limit corresponding to thorough conversion of initial C and O to N. There is an apparent difference between the composition of R CrBs and EHes; the former having systematically higher [N/M] ratios. The material present in the atmospheres of many R CrBs is heavily CN- and ON-cycled. Most of the EHes have only CN-cycled material in their atmospheres. There is an indication that the CN- and ON-cycled N in EHes was partially converted to Ne by $alpha$-captures. If EHes are to evolve to R CrBs, fresh C in EHes has to be converted to N. If Ne is found to be normal in R CrBs, the proposal that EHes evolve to R CrBs fails. The idea that R CrBs evolve to EHes is ruled out; the N abundance in R CrBs has to be reduced to the level of EHes, as the C/He which is observed to be uniform across EHes, has to be maintained. Hence, the inferred [N/M], C/He, [Ne/M], and the H-abundances of these two groups indicate that the EHes and the R CrBs may not be on the same evolutionary path.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا