No Arabic abstract
Type-B quasi periodic oscillations (QPOs) in black-hole X-ray binaries (BHXRBs) are a class of low-frequency QPOs that are observed in the soft intermediate state in the rising and the declining phases of an outburst. They are suspected to result from the precession of the jet that is ejected from the source. The objective of the present work is to investigate in detail the emissivity of the jet in hard X-rays and to see whether the type-B QPOs from GX 339-4, which is the best studied black-hole transient, can be explained quantitatively with a precessing jet. We used our simple jet model, which invokes Comptonization in the jet, and examined the angular dependence of the upscattered photons that emerge from the jet and their energy distribution, which is a power law. Due to the elongation of the jet, assisted by the bulk motion of the electrons, the angular distribution of the emerging hard X-ray photons from the jet is not isotropic. More importantly, the photon-number spectral index, $Gamma,$ is an increasing function of the polar angle, $theta,$ with respect to the axis of the jet. If the jet is fixed, then an observer at infinity sees the photon index, $Gamma,$ which corresponds to this specific observational direction. However, if the jet is precessing, then the observer sees a periodic variation of $Gamma$ with the precession period. Such a periodic variation of $Gamma$ has been observed in GX 339-4 and in this work, we reproduce it quantitatively, using our model. Our jet model nicely explains through quantitative means the type-B QPOs seen in GX 339-4 as originating from a precessing jet. The given model has previously explained several observed correlations thus far.
Black-hole transients exhibit a correlation between the time lag of hard photons with respect to softer ones and the photon index of the hard X-ray power law. The correlation is not very tight and therefore it is necessary to examine it source by source. The objective of the present work is to investigate in detail the time-lag -- photon-index correlation in GX 339-4. We have obtained RXTE energy spectra and light curves and have computed the photon index and the time lag of the $9 - 15$ keV photons with respect to the $2 - 6$ keV ones. The observations cover the first stages of the hard state, the pure hard state, and the hard-intermediate state. At low $Gamma$, the correlation is positive and it becomes negative at large $Gamma$. By assuming that the hard X-ray power law index $Gamma$ is produced by inverse Compton scattering of soft disk photons in the jet, we have reproduced the entire correlation by varying two parameters in the jet: the radius of the jet at its base $R_0$ and the Thomson optical depth along the jet $tau_parallel$. We have found that, as the luminosity of the source increases, $R_0$ initially increases and then decreases. This behavior is expected in the context of the Cosmic Battery. As a further test of our model, we predict the break frequency in the radio spectrum as a function of the photon index during the rising part of an outburst.
We present an analysis of NuSTAR observations of a hard intermediate state of the transient black hole GX 339-4 taken in January 2015. As the source softened significantly over the course of the 1.3 d-long observation we split the data into 21 sub-sets and find that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from ~1.69 to ~1.77 over the course of the observation. The accretion disk is truncated at around 9 gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which increase in frequency from ~0.68 to ~1.05 Hz with time. The frequency change is well correlated with the softening of the spectrum. We discuss possible scenarios for the production of the QPO and calculate predicted inner radii in the relativistic precession model as well as the global disk mode oscillations model. We find discrepancies with respect to the observed values in both models unless we allow for a black hole mass of ~100 M_sun , which is highly unlikely. We discuss possible systematic uncertainties, in particular with the measurement of the inner accretion disk radius in the relativistic reflection model. We conclude that the combination of observed QPO frequencies and inner accretion disk radii, as obtained from spectral fitting, is difficult to reconcile with current models.
Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339-4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state. We also outline the results of very sensitive radio observations conducted with the Australia Telescope Compact Array, along with a series of near-infrared, optical (OIR) and X-ray observations, allowing for the first time the re-ignition of the compact jets to be observed over a wide range of wavelengths. The compact jets first turn on at radio frequencies with an optically thin spectrum that later evolves to optically thick synchrotron emission. An OIR reflare is observed about ten days after the onset of radio and hard X-ray emission, likely reflecting the necessary time to build up enough density, as well as to have acceleration (e.g. through shocks) along an extended region in the jets. The Herschel measurements are consistent with an extrapolation of the radio inverted power-law spectrum, but they highlight a more complex radio to OIR spectral energy distribution for the jets.
We present a broad band spectral analysis of the black hole binary GX~339-4 with NuSTAR and Swift using high density reflection model. The observations were taken when the source was in low flux hard states (LF) during the outbursts in 2013 and 2015, and in a very high flux soft state (HF) in 2015. The high density reflection model can explain its LF spectra with no requirement for an additional low temperature thermal component. This model enables us to constrain the density in the disc surface of GX~339-4 in different flux states. The disc density in the LF state is $log(n_{rm e}/$ cm$^{-3})approx21$, 100 times higher than the density in the HF state ($log(n_{rm e}/$ cm$^{-3})=18.93^{+0.12}_{-0.16}$). A close-to-solar iron abundance is obtained by modelling the LF and HF broad band spectra with variable density reflection model ($Z_{rm Fe}=1.50^{+0.12}_{-0.04}Z_{odot}$ and $Z_{rm Fe}=1.05^{+0.17}_{-0.15}Z_{odot}$ respectively).
We report BeppoSAX and optical observations of the black hole candidate GX 339-4 during its X-ray `off state in 1999. The broad-band (0.8-50 keV) X-ray emission can be fitted by a single power law with spectral index, alpha ~1.6. The observed luminosity is 6.6e33 erg s^{-1} in the 0.5-10 keV band, which is at the higher end of the flux distribution of black hole soft X-ray transients in quiescence, comparable to that seen in GS 2023+338 and 4U 1630-47. An optical observation just before the BeppoSAX observation shows the source to be very faint at these wavelengths as well (B=20.1, V=19.2). By comparing with previously reported `off and low states (LS), we conclude that the `off state is actually an extension of the LS, i.e. a LS at lower intensities. We propose that accretion models such as the advection-dominated accretion flows are able to explain the observed properties in such a state.