No Arabic abstract
Black-hole transients exhibit a correlation between the time lag of hard photons with respect to softer ones and the photon index of the hard X-ray power law. The correlation is not very tight and therefore it is necessary to examine it source by source. The objective of the present work is to investigate in detail the time-lag -- photon-index correlation in GX 339-4. We have obtained RXTE energy spectra and light curves and have computed the photon index and the time lag of the $9 - 15$ keV photons with respect to the $2 - 6$ keV ones. The observations cover the first stages of the hard state, the pure hard state, and the hard-intermediate state. At low $Gamma$, the correlation is positive and it becomes negative at large $Gamma$. By assuming that the hard X-ray power law index $Gamma$ is produced by inverse Compton scattering of soft disk photons in the jet, we have reproduced the entire correlation by varying two parameters in the jet: the radius of the jet at its base $R_0$ and the Thomson optical depth along the jet $tau_parallel$. We have found that, as the luminosity of the source increases, $R_0$ initially increases and then decreases. This behavior is expected in the context of the Cosmic Battery. As a further test of our model, we predict the break frequency in the radio spectrum as a function of the photon index during the rising part of an outburst.
We have performed a timing and spectral analysis of a set of black-hole binaries to study the correlation between the photon index and the time lag of the hard photons with respect to the soft ones. We provide further evidence that the timing and spectral properties in black-hole X-ray binaries are coupled. In particular, we find that the average time lag increases as the X-ray emission becomes softer. Although a correlation between the hardness of the X-ray spectrum and the time (or phase) lag has been reported in the past for a handful of systems, our study confirms that this correlated behaviour is a global property of black-hole X-ray binaries. We also demonstrate that the photon-index - time-lag correlation can be explained as a result of inverse Comptonization in a jet.
Recently, we reported an observational correlation between a) the time-lag of the hard (9 - 15 keV) with respect to the soft (2 - 5 keV) X-ray photons in black-hole X-ray binaries (BHXRBs) and b) the power-law photon index $Gamma$ of the X-ray spectrum. This was physically explained with a simple jet model, i.e., a model where the Comptonization (the Compton upscattering of soft photons) happens in the jet. Here, we report the inclination dependence of this correlation, which we also explain with our jet model. Photons that emerge at different polar angles from the jet axis have different spectra and different time-lags. Because of this, we can explain quantitatively the type-B QPOs of GX 339-4 as resulting from a precessing jet.
The existing radio and X-ray flux correlation for Galactic black holes in the hard and quiescent states relies on a sample which is mostly dominated by two sources (GX 339-4 and V404 Cyg) observed in a single outburst. In this paper, we report on a series of radio and X-ray observations of the recurrent black hole GX 339-4 with the Australia Telescope Compact Array, the Rossi X-ray Timing Explorer and the Swift satellites. With our new long term campaign, we now have a total of 88 quasi-simultaneous radio and X-ray observations of GX 339-4 during its hard state, covering a total of seven outbursts over a 15--year period. Our new measurements represent the largest sample for a stellar mass black hole, without any bias from distance uncertainties, over the largest flux variations and down to a level that could be close to quiescence, making GX 339-4 the reference source for comparison with other accreting sources (black holes, neutrons stars, white dwarfs and active galactic nuclei). Our results demonstrate a very strong and stable coupling between radio and X-ray emission, despite several outbursts of different nature and separated by a period of quiescence. The radio and X-ray luminosity correlation of the form L_X ~L_Rad^0.62 +/-0.01 confirms the non-linear coupling between the jet and the inner accretion flow powers and better defines the standard correlation track in the radio-X-ray diagram for stellar mass black holes. We further note epochs of deviations from the fit that significantly exceed the measurement uncertainties, especially during the formation and destruction of the compact jets ...[abridged]. We incorporated our new data in a more global study of black hole candidates strongly supporting a scale invariance in the jet-accretion coupling of accreting black holes, and confirms the existence of two populations of sources in the radio/X-ray diagram.
Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339-4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state. We also outline the results of very sensitive radio observations conducted with the Australia Telescope Compact Array, along with a series of near-infrared, optical (OIR) and X-ray observations, allowing for the first time the re-ignition of the compact jets to be observed over a wide range of wavelengths. The compact jets first turn on at radio frequencies with an optically thin spectrum that later evolves to optically thick synchrotron emission. An OIR reflare is observed about ten days after the onset of radio and hard X-ray emission, likely reflecting the necessary time to build up enough density, as well as to have acceleration (e.g. through shocks) along an extended region in the jets. The Herschel measurements are consistent with an extrapolation of the radio inverted power-law spectrum, but they highlight a more complex radio to OIR spectral energy distribution for the jets.
Type-B quasi periodic oscillations (QPOs) in black-hole X-ray binaries (BHXRBs) are a class of low-frequency QPOs that are observed in the soft intermediate state in the rising and the declining phases of an outburst. They are suspected to result from the precession of the jet that is ejected from the source. The objective of the present work is to investigate in detail the emissivity of the jet in hard X-rays and to see whether the type-B QPOs from GX 339-4, which is the best studied black-hole transient, can be explained quantitatively with a precessing jet. We used our simple jet model, which invokes Comptonization in the jet, and examined the angular dependence of the upscattered photons that emerge from the jet and their energy distribution, which is a power law. Due to the elongation of the jet, assisted by the bulk motion of the electrons, the angular distribution of the emerging hard X-ray photons from the jet is not isotropic. More importantly, the photon-number spectral index, $Gamma,$ is an increasing function of the polar angle, $theta,$ with respect to the axis of the jet. If the jet is fixed, then an observer at infinity sees the photon index, $Gamma,$ which corresponds to this specific observational direction. However, if the jet is precessing, then the observer sees a periodic variation of $Gamma$ with the precession period. Such a periodic variation of $Gamma$ has been observed in GX 339-4 and in this work, we reproduce it quantitatively, using our model. Our jet model nicely explains through quantitative means the type-B QPOs seen in GX 339-4 as originating from a precessing jet. The given model has previously explained several observed correlations thus far.