Do you want to publish a course? Click here

From the CMF to the IMF: Beyond the Core-Collapse Model

71   0   0.0 ( 0 )
 Added by Veli-Matti Pelkonen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations have indicated that the prestellar core mass function (CMF) is similar to the stellar initial mass function (IMF), except for an offset towards larger masses. This has led to the idea that there is a one-to-one relation between cores and stars, such that the whole stellar mass reservoir is contained in a gravitationally-bound prestellar core, as postulated by the core-collapse model, and assumed in recent theoretical models of the stellar IMF. We test the validity of this assumption by comparing the final mass of stars with the mass of their progenitor cores in a high-resolution star-formation simulation that generates a realistic IMF under physical conditions characteristic of observed molecular clouds. Using a definition of bound cores similar to previous works we obtain a CMF that converges with increasing numerical resolution. We find that the CMF and the IMF are closely related in a statistical sense only; for any individual star there is only a weak correlation between the progenitor core mass and the final stellar mass. In particular, for high mass stars only a small fraction of the final stellar mass comes from the progenitor core, and even for low mass stars the fraction is highly variable, with a median fraction of only about 50%. We conclude that the core-collapse scenario and related models for the origin of the IMF are incomplete. We also show that competitive accretion is not a viable alternative.

rate research

Read More

We present our study of OGLE-2014-SN-073, one of the brightest Type II SN ever discovered, with an unusually broad lightcurve combined with high ejecta velocities. From our hydrodynamical modelling we infer a remarkable ejecta mass of $60^{+42}_{-16}$~M$_odot$, and a relatively high explosion energy of $12.4^{+13.0}_{-5.9} times10^{51}$~erg. We show that this object belongs, with a very small number of other hydrogen-rich SNe, to an energy regime that is not explained by standard core-collapse (CC) neutrino-driven explosions. We compare the quantities inferred by the hydrodynamical modelling with the expectations of various exploding scenarios, trying to explain the high energy and luminosity released. We find some qualitative similarities with pair-instabilities SNe, although a prompt injection of energy by a magnetar seems also a viable alternative to explain such extreme event.
We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19) x 10**(-4)/(yr Mpc**3) at a mean redshift of 0.072 +/- 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.
While it is generally accepted that the magnetic field and its non-ideal effects play important roles during the stellar formation, simple models of pure hydrodynamics and angular momentum conservation are still widely employed in the studies of disk assemblage in the framework of the so-called alpha-disk model due to their simplicity. There has only been a few efforts trying to bridge the gap between a collapsing prestellar core and a developed disk. The goal of the present work is to revisit the assemblage of the protoplanetary disk (PPD), by performing 3D MHD simulations with ambipolar diffusion and full radiative transfer. We follow the global evolution of the PPD from the prestellar core collapse for 100 kyr, with resolution of one AU. The formed disk is more realistic and is in agreement with recent observations of disks around class-0 young stellar objects. The mass flux arriving onto the disk and the radial mass accretion rate within the disk are measured and compared to analytical self-similar models. The surface mass flux is very centrally peaked, implying that most of the mass falling onto the star does not transit through the mid-plane of the disk. The disk mid-plane is almost dead to turbulence, whereas upper layers and the disk outer edge are very turbulent. The snow-line is significantly further away than in a passive disk. We developed a zoomed rerun technique to quickly obtain a reasonable disk that is highly stratified, weakly magnetized inside, and strongly magnetized outside. During the class-0 phase of PPD formation, the interaction between the disk and the infalling envelope is important and ought not be neglected. Accretion onto the star is found to mostly depend on dynamics of the collapsing envelope, rather than the detailed disk structure.
The physics of core-collapse (CC) supernovae (SNe) and how the explosions depend on progenitor properties are central questions in astronomy. For only a handful of SNe, the progenitor star has been identified in pre-explosion images. Supernova remnants (SNRs), which are observed long after the original SN event, provide a unique opportunity to increase the number of progenitor measurements. Here, we systematically examine the stellar populations in the vicinities of 23 known SNRs in the Small Magellanic Cloud (SMC) using the star formation history (SFH) maps of Harris & Zaritsky (2004). We combine the results with constraints on the SNR metal abundances and environment from X-ray and optical observations. We find that 22 SNRs in the SMC have local SFHs and properties consistent with a CC explosion, several of which are likely to have been high-mass progenitors. This result supports recent theoretical findings that high-mass progenitors can produce successful explosions. We estimate the mass distribution of the CC progenitors and find that this distribution is similar to a Salpeter IMF (within the uncertainties), while this result is shallower than the mass distribution found in M31 and M33 by Jennings et al. (2014) and D{i}az-Rodr{i}guez et al. (2018) using a similar approach. Additionally, we find that a number of the SMC SNRs exhibit a burst of star formation between 50-200 Myr ago. As these sources are likely CC, this signature may be indicative of massive stars undergoing delayed CC as a consequence of binary interaction, rapid rotation, or low metallicity. In addition, the lack of Type Ia SNRs in the SMC is possibly a result of the short visibility times of these sources as they may fall below the sensitivity limits of current radio observations.
Unraveling the mechanism for core-collapse supernova explosions is an outstanding computational challenge and the problem remains essentially unsolved despite more than four decades of effort. However, much progress in realistic modeling has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements have led to some key insights which may clarify the picture in the not too distant future. Here we briefly review the current status of the three explosion mechanisms (acoustic, MHD, and neutrino heating) that are currently under active investigation, concentrating on the neutrino heating mechanism as the one most likely responsible for producing explosions from progenitors in the mass range ~10 to ~25 solar masses. We then briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We finally describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 solar mass progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 10,000 km. We finally very briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 solar mass progenitor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا