Do you want to publish a course? Click here

Protoplanetary disk formation from the collapse of a prestellar core

149   0   0.0 ( 0 )
 Added by Yueh-Ning Lee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

While it is generally accepted that the magnetic field and its non-ideal effects play important roles during the stellar formation, simple models of pure hydrodynamics and angular momentum conservation are still widely employed in the studies of disk assemblage in the framework of the so-called alpha-disk model due to their simplicity. There has only been a few efforts trying to bridge the gap between a collapsing prestellar core and a developed disk. The goal of the present work is to revisit the assemblage of the protoplanetary disk (PPD), by performing 3D MHD simulations with ambipolar diffusion and full radiative transfer. We follow the global evolution of the PPD from the prestellar core collapse for 100 kyr, with resolution of one AU. The formed disk is more realistic and is in agreement with recent observations of disks around class-0 young stellar objects. The mass flux arriving onto the disk and the radial mass accretion rate within the disk are measured and compared to analytical self-similar models. The surface mass flux is very centrally peaked, implying that most of the mass falling onto the star does not transit through the mid-plane of the disk. The disk mid-plane is almost dead to turbulence, whereas upper layers and the disk outer edge are very turbulent. The snow-line is significantly further away than in a passive disk. We developed a zoomed rerun technique to quickly obtain a reasonable disk that is highly stratified, weakly magnetized inside, and strongly magnetized outside. During the class-0 phase of PPD formation, the interaction between the disk and the infalling envelope is important and ought not be neglected. Accretion onto the star is found to mostly depend on dynamics of the collapsing envelope, rather than the detailed disk structure.



rate research

Read More

78 - Alice S. Booth 2019
Measurements of the gas mass are necessary to determine the planet formation potential of protoplanetary disks. Observations of rare CO isotopologues are typically used to determine disk gas masses; however, if the line emission is optically thick this will result in an underestimated disk mass. With ALMA we have detected the rarest stable CO isotopologue, 13C17O, in a protoplanetary disk for the first time. We compare our observations with the existing detections of 12CO, 13CO, C18O and C17O in the HD163296 disk. Radiative transfer modelling using a previously benchmarked model, and assuming interstellar isotopic abundances, significantly underestimates the integrated intensity of the 13C17O J=3-2 line. Reconciliation between the observations and the model requires a global increase in CO gas mass by a factor of 3.5. This is a factor of 2-6 larger than previous gas mass estimates using C18O. We find that C18O emission is optically thick within the CO snow line, while the 13C17O emission is optically thin and is thus a robust tracer of the bulk disk CO gas mass.
The protoplanetary disk around the T Tauri star GM Aur was one of the first hypothesized to be in the midst of being cleared out by a forming planet. As a result, GM Aur has had an outsized influence on our understanding of disk structure and evolution. We present 1.1 and 2.1 mm ALMA continuum observations of the GM Aur disk at a resolution of ~50 mas (~8 au), as well as HCO$^+$ $J=3-2$ observations at a resolution of ~100 mas. The dust continuum shows at least three rings atop faint, extended emission. Unresolved emission is detected at the center of the disk cavity at both wavelengths, likely due to a combination of dust and free-free emission. Compared to the 1.1 mm image, the 2.1 mm image shows a more pronounced shoulder near R~40 au, highlighting the utility of longer-wavelength observations for characterizing disk substructures. The spectral index $alpha$ features strong radial variations, with minima near the emission peaks and maxima near the gaps. While low spectral indices have often been ascribed to grain growth and dust trapping, the optical depth of GM Aurs inner two emission rings renders their dust properties ambiguous. The gaps and outer disk ($R>100$ au) are optically thin at both wavelengths. Meanwhile, the HCO$^+$ emission indicates that the gas cavity is more compact than the dust cavity traced by the millimeter continuum, similar to other disks traditionally classified as transitional.
Meteorites contain relict decay products of short-lived radionuclides that were present in the protoplanetary disk when asteroids and planets formed. Several studies reported a high abundance of 60Fe (t1/2=2.62+/-0.04 Myr) in chondrites (60Fe/56Fe~6*10-7), suggesting that planetary materials incorporated fresh products of stellar nucleosynthesis ejected by one or several massive stars that exploded in the vicinity of the newborn Sun. We measured 58Fe/54Fe and 60Ni/58Ni isotope ratios in whole rocks and constituents of differentiated achondrites (ureilites, aubrites, HEDs, and angrites), unequilibrated ordinary chondrites Semarkona (LL3.0) and NWA 5717 (ungrouped petrologic type 3.05), metal-rich carbonaceous chondrite Gujba (CBa), and several other meteorites (CV, EL H, LL chondrites; IIIAB, IVA, IVB iron meteorites). We derive from these measurements a much lower initial 60Fe/56Fe ratio of (11.5+/-2.6)*10-9 and conclude that 60Fe was homogeneously distributed among planetary bodies. This low ratio is consistent with derivation of 60Fe from galactic background (60Fe/56Fe=2.8*10-7 in the interstellar medium from gamma-ray observations) and can be reconciled with high 26Al/27Al=5*10-5 in chondrites if solar material was contaminated through winds by outer layers of one or several massive stars (e.g., a Wolf-Rayet star) rich in 26Al and poor in 60Fe. We present the first chronological application of the 60Fe-60Ni decay system to establish the time of core formation on Vesta at 3.7 (+2.5/-1.7) Myr after condensation of calcium-aluminum-rich inclusions (CAIs).
Rocky asteroids and planets display nucleosynthetic isotope variations that are attributed to the heterogeneous distribution of stardust from different stellar sources in the solar protoplanetary disk. Here we report new high precision palladium isotope data for six iron meteorite groups, which display smaller nucleosynthetic isotope variations than the more refractory neighbouring elements. Based on this observation we present a new model in which thermal destruction of interstellar medium dust results in an enrichment of s-process dominated stardust in regions closer to the Sun. We propose that stardust is depleted in volatile elements due to incomplete condensation of these elements into dust around asymptotic giant branch (AGB) stars. This led to the smaller nucleosynthetic variations for Pd reported here and the lack of such variations for more volatile elements. The smaller magnitude variations measured in heavier refractory elements suggest that material from high-metallicity AGB stars dominated stardust in the Solar System. These stars produce less heavy s-process elements compared to the bulk Solar System composition.
We present the evolution of rotational directions of circumstellar disks in a triple protostar system simulated from a turbulent molecular cloud core with no magnetic field. We find a new formation pathway of a counter-rotating circumstellar disk in such triple systems. The tertiary protostar forms via the circumbinary disk fragmentation and the initial rotational directions of all the three circumstellar disks are almost parallel to that of the orbital motion of the binary system. Their mutual gravito-hydrodynamical interaction for the subsequent $sim10^4thinspacerm{yr}$ greatly disturbs the orbit of the tertiary, and the rotational directions of the tertiary disk and star are reversed due to the spiral-arm accretion of the circumbinary disk. The counter-rotation of the tertiary circumstellar disk continues to the end of the simulation ($sim6.4times10^4thinspacerm{yr}$ after its formation), implying that the counter-rotating disk is long-lived. This new formation pathway during the disk evolution in Class 0/I Young Stellar Objects possibly explains the counter-rotating disks recently discovered by ALMA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا