Do you want to publish a course? Click here

Novel High-Throughput Decoding Algorithms for Product and Staircase Codes based on Error-and-Erasure Decoding

133   0   0.0 ( 0 )
 Added by Alireza Sheikh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Product codes (PCs) and staircase codes (SCCs) are conventionally decoded based on bounded distance decoding (BDD) of the component codes and iterating between row and column decoders. The performance of iterative BDD (iBDD) can be improved using soft-aided (hybrid) algorithms. Among these, iBDD with combined reliability (iBDD-CR) has been recently proposed for PCs, yielding sizeable performance gains at the expense of a minor increase in complexity compared to iBDD. In this paper, we first extend iBDD-CR to SCCs. We then propose two novel decoding algorithms for PCs and SCCs which improve upon iBDD-CR. The new algorithms use an extra decoding attempt based on error and erasure decoding of the component codes. The proposed algorithms require only the exchange of hard messages between component decoders, making them an attractive solution for ultra high-throughput fiber-optic systems. Simulation results show that our algorithms based on two decoding attempts achieve gains of up to $0.88$ dB for both PCs and SCCs. This corresponds to a $33%$ optical reach enhancement over iBDD with bit-interleaved coded modulation using $256$ quadrature amplitude modulation.



rate research

Read More

Staircase codes play an important role as error-correcting codes in optical communications. In this paper, a low-complexity method for resolving stall patterns when decoding staircase codes is described. Stall patterns are the dominating contributor to the error floor in the original decoding method. Our improvement is based on locating stall patterns by intersecting non-zero syndromes and flipping the corresponding bits. The approach effectively lowers the error floor and allows for a new range of block sizes to be considered for optical communications at a certain rate or, alternatively, a significantly decreased error floor for the same block size. Further, an improved error floor analysis is introduced which provides a more accurate estimation of the contributions to the error floor.
We study low-complexity iterative decoding algorithms for product codes. We revisit two algorithms recently proposed by the authors based on bounded distance decoding (BDD) of the component codes that improve the performance of conventional iterative BDD (iBDD). We then propose a novel decoding algorithm that is based on generalized minimum distance decoding of the component codes. The proposed algorithm closes over 50% of the performance gap between iBDD and turbo product decoding (TPD) based on the Chase-Pyndiah algorithm. Moreover, the algorithm only leads to a limited increase in complexity with respect to iBDD and has significantly lower complexity than TPD. The studied algorithms are particularly interesting for high-throughput fiber-optic communications.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by Bocherer emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.
A product code with single parity-check component codes can be described via the tools of a multi-kernel polar code, where the rows of the generator matrix are chosen according to the constraints imposed by the product code construction. Following this observation, successive cancellation decoding of such codes is introduced. In particular, the error probability of single parity-check product codes over binary memoryless symmetric channels under successive cancellation decoding is characterized. A bridge with the analysis of product codes introduced by Elias is also established for the binary erasure channel. Successive cancellation list decoding of single parity-check product codes is then described. For the provided example, simulations over the binary input additive white Gaussian channel show that successive cancellation list decoding outperforms belief propagation decoding applied to the code graph. Finally, the performance of the concatenation of a product code with a high-rate outer code is investigated via distance spectrum analysis. Examples of concatenations performing within $0.7$ dB from the random coding union bound are provided.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا