We study low-complexity iterative decoding algorithms for product codes. We revisit two algorithms recently proposed by the authors based on bounded distance decoding (BDD) of the component codes that improve the performance of conventional iterative BDD (iBDD). We then propose a novel decoding algorithm that is based on generalized minimum distance decoding of the component codes. The proposed algorithm closes over 50% of the performance gap between iBDD and turbo product decoding (TPD) based on the Chase-Pyndiah algorithm. Moreover, the algorithm only leads to a limited increase in complexity with respect to iBDD and has significantly lower complexity than TPD. The studied algorithms are particularly interesting for high-throughput fiber-optic communications.
Probabilistic amplitude shaping (PAS) can flexibly vary the spectral efficiency (SE) of fiber-optic systems. In this paper, we demonstrate the application of PAS to bit-wise hard decision decoding (HDD) of product codes (PCs) by finding the necessary conditions to select the PC component codes. We show that PAS with PCs and HDD yields gains up to $2.7$ dB and SE improvement up to approximately $1$ bit/channel use compared to using PCs with uniform signaling and HDD. Furthermore, we employ the recently introduced iterative bounded distance decoding with combined reliability of PCs to improve performance of PAS with PCs and HDD.
Product codes (PCs) and staircase codes (SCCs) are conventionally decoded based on bounded distance decoding (BDD) of the component codes and iterating between row and column decoders. The performance of iterative BDD (iBDD) can be improved using soft-aided (hybrid) algorithms. Among these, iBDD with combined reliability (iBDD-CR) has been recently proposed for PCs, yielding sizeable performance gains at the expense of a minor increase in complexity compared to iBDD. In this paper, we first extend iBDD-CR to SCCs. We then propose two novel decoding algorithms for PCs and SCCs which improve upon iBDD-CR. The new algorithms use an extra decoding attempt based on error and erasure decoding of the component codes. The proposed algorithms require only the exchange of hard messages between component decoders, making them an attractive solution for ultra high-throughput fiber-optic systems. Simulation results show that our algorithms based on two decoding attempts achieve gains of up to $0.88$ dB for both PCs and SCCs. This corresponds to a $33%$ optical reach enhancement over iBDD with bit-interleaved coded modulation using $256$ quadrature amplitude modulation.
We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called emph{hard decision decoder} which, however, exploits emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabilities and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to $0.29$ dB and $0.31$ dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.