No Arabic abstract
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description differs qualitatively depending on whether the system is of closed-(sub)shell or open-(sub)shell nature. Here, we extend the discussion to the more general framework of Finite-Temperature HFB (FTHFB) which deals with statistical density operators, instead of pure many-body states. We scrutinize in detail the zero-temperature and zero-pairing limits of such a description, and in particular the combination of both limits. For closed-shell systems, we find that the FTHFB formulism reduces to the (zero-temperature) Hartree-Fock formulism, i.e. we recover the textbook solution. For open-shell systems, however, the resulting description depends on the order in which both limits are taken: if the zero-temperature limit is performed first, the FTHFB density operator demotes to a pure state which is a linear combination of a finite number of Slater determinants, i.e. the case of arXiv:2006.02871. If the zero-pairing limit is performed first, the FTHFB density operator remains a mixture of a finite number of Slater determinants with non-zero entropy, even as the temperature vanishes. These analytical findings are illustrated numerically for a series of Oxygen isotopes.
The variational Hartree-Fock-Bogoliubov (HFB) mean-field theory is the starting point of various (ab initio) many-body methods dedicated to superfluid systems. While taking the zero-pairing limit of HFB equations constitutes a text-book problem when the system is of closed-(sub)shell character, it is typically, although wrongly, thought to be ill-defined whenever the naive filling of single-particle levels corresponds to an open-shell system. The present work demonstrates that the zero-pairing limit of an HFB state is mathematically well-defined, independently of the closed- or open-shell character of the system in the limit. Still, the nature of the limit state strongly depends on the underlying shell structure and on the associated naive filling reached in the zero-pairing limit for the particle number A of interest. All the analytical findings are confirmed and illustrated numerically. While HFB theory has been intensively scrutinized formally and numerically over the last decades, it still uncovers unknown and somewhat unexpected features. From this general perspective, the present analysis demonstrates that HFB theory does not reduce to Hartree-Fock theory even when the pairing field is driven to zero in the HFB Hamiltonian matrix.
Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified and highly predictive description of both nuclear mean field and pairing correlations. Ground state properties of finite nuclei can accurately be reproduced without neglecting exchange (Fock) contributions. Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet been developed, leaving yet unknown its predictions for phase transitions and thermal excitations in both stable and weakly bound nuclei. Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWS) basis considering two kinds of pairing interactions: finite or zero range. Such a model is appropriate for describing stable as well as loosely bound nuclei since the basis states have correct asymptotic behaviour for large spatial distributions. Results: Systematic FT-RH(F)B calculations are performed for several semi-magic isotopic/isotonic chains comparing the predictions of a large number of Lagrangians, among which are PKA1, PKO1 and DD-ME2. It is found that the critical temperature for a pairing transition generally follows the rule $T_c = 0.60Delta(0)$ for a finite-range pairing force and $T_c = 0.57Delta(0)$ for a contact pairing force, where $Delta(0)$ is the pairing gap at zero temperature. Two types of pairing persistence are analysed: type I pairing persistence occurs in closed subshell nuclei while type II pairing persistence can occur in loosely bound nuclei strongly coupled to the continuum states. Conclusions: This first FT-RHFB calculation shows very interesting features of the pairing correlations at finite temperature and in finite systems such as pairing re-entrance and pairing persistence.
In order to study structure of proto-neutron stars and those in subsequent cooling stages, it is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety of phases. The finite-temperature Hartree-Fock-Bogoliubov (FT-HFB) theory is a primary choice for this purpose, however, its numerical calculation for superfluid (superconducting) many-fermion systems in three dimensions requires enormous computational costs. To study a variety of phases in the crust of hot and cold neutron stars, we propose an efficient method to perform the FT-HFB calculation with the three-dimensional (3D) coordinate-space representation. Recently, an efficient method based on the contour integral of Greens function with the shifted conjugate-orthogonal conjugate-gradient method has been proposed [Phys. Rev. C 95, 044302 (2017)]. We extend the method to the finite temperature, using the shifted conjugate-orthogonal conjugate-residual method. We benchmark the 3D coordinate-space solver of the FT-HFB calculation for hot isolated nuclei and fcc phase in the inner crust of neutron stars at finite temperature. The computational performance of the present method is demonstrated. Different critical temperatures of the quadrupole and the octupole deformations are confirmed for $^{146}$Ba. The robustness of the shape coexistence feature in $^{184}$Hg is examined. For the neutron-star crust, the deformed neutron-rich Se nuclei embedded in the sea of superfluid low-density neutrons appear in the fcc phase at the nucleon density of 0.045 fm$^{-3}$ and the temperature of $k_B T=200$ keV. The efficiency of the developed solver is demonstrated for nuclei and inhomogeneous nuclear matter at finite temperature. It may provide a standard tool for nuclear physics, especially for the structure of the hot and cold neutron-star matters.
Microcavity exciton-polaritons, known to exhibit non-equilibrium Bose condensation at high critical temperatures, can be also brought in thermal equilibrium with the surrounding medium and form a quantum degenerate Bose-Einstein distribution. It happens when their thermalization time in the regime of positive detunings -- or, alternatively, for high-finesse microcavities -- becomes shorter than their lifetime. Here we present the self-consistent finite-temperature Hartree-Fock-Bogoliubov description for such a system of polaritons, universally addressing the excitation spectrum, momentum-dependent interactions, condensate depletion, and the background population of dark excitons that contribute to the systems chemical potential. Employing the derived expressions, we discuss the implications for the Bogoliubov sound velocity, confirmed by existing experiments, and define the critical temperatures of (quasi-)condensation and the integral particle lifetime dependencies on the detuning. Large positive detunings are shown to provide conditions for the total lifetime reaching nanosecond timescales. This allows realization of thermodynamically-equilibrium polariton systems with Bose-Einstein condensate forming at temperatures as high as tens of Kelvin.
The finite-temperature linear response theory based on the finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model is developed in the charge-exchange channel to study the temperature evolution of spin-isospin excitations. Calculations are performed self-consistently with relativistic point-coupling interactions DD-PC1 and DD-PCX. In the charge-exchange channel, the pairing interaction can be split into isovector ($T = 1$) and isoscalar ($T = 0$) parts. For the isovector component, the same separable form of the Gogny D1S pairing interaction is used both for the ground-state calculation as well as for the residual interaction, while the strength of the isoscalar pairing in the residual interaction is determined by comparison with experimental data on Gamow-Teller resonance (GTR) and Isobaric analog resonance (IAR) centroid energy differences in even-even tin isotopes. The temperature effects are introduced by treating Bogoliubov quasiparticles within a grand-canonical ensemble. Thus, unlike the conventional formulation of the quasiparticle random-phase approximation (QRPA) based on the Bardeen-Cooper-Schrieffer (BCS) basis, our model is formulated within the Hartree-Fock-Bogoliubov (HFB) quasiparticle basis. Implementing a relativistic point-coupling interaction and a separable pairing force allows for the reduction of complicated two-body residual interaction matrix elements, which considerably decreases the dimension of the problem in the coordinate space. The main advantage of this method is to avoid the diagonalization of a large QRPA matrix, especially at finite temperature where the size of configuration space is significantly increased. The implementation of the linear response code is used to study the temperature evolution of IAR, GTR, and spin-dipole resonance (SDR) in even-even tin isotopes in the temperature range $T = 0 - 1.5$ MeV.