No Arabic abstract
The variational Hartree-Fock-Bogoliubov (HFB) mean-field theory is the starting point of various (ab initio) many-body methods dedicated to superfluid systems. While taking the zero-pairing limit of HFB equations constitutes a text-book problem when the system is of closed-(sub)shell character, it is typically, although wrongly, thought to be ill-defined whenever the naive filling of single-particle levels corresponds to an open-shell system. The present work demonstrates that the zero-pairing limit of an HFB state is mathematically well-defined, independently of the closed- or open-shell character of the system in the limit. Still, the nature of the limit state strongly depends on the underlying shell structure and on the associated naive filling reached in the zero-pairing limit for the particle number A of interest. All the analytical findings are confirmed and illustrated numerically. While HFB theory has been intensively scrutinized formally and numerically over the last decades, it still uncovers unknown and somewhat unexpected features. From this general perspective, the present analysis demonstrates that HFB theory does not reduce to Hartree-Fock theory even when the pairing field is driven to zero in the HFB Hamiltonian matrix.
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description differs qualitatively depending on whether the system is of closed-(sub)shell or open-(sub)shell nature. Here, we extend the discussion to the more general framework of Finite-Temperature HFB (FTHFB) which deals with statistical density operators, instead of pure many-body states. We scrutinize in detail the zero-temperature and zero-pairing limits of such a description, and in particular the combination of both limits. For closed-shell systems, we find that the FTHFB formulism reduces to the (zero-temperature) Hartree-Fock formulism, i.e. we recover the textbook solution. For open-shell systems, however, the resulting description depends on the order in which both limits are taken: if the zero-temperature limit is performed first, the FTHFB density operator demotes to a pure state which is a linear combination of a finite number of Slater determinants, i.e. the case of arXiv:2006.02871. If the zero-pairing limit is performed first, the FTHFB density operator remains a mixture of a finite number of Slater determinants with non-zero entropy, even as the temperature vanishes. These analytical findings are illustrated numerically for a series of Oxygen isotopes.
Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified and highly predictive description of both nuclear mean field and pairing correlations. Ground state properties of finite nuclei can accurately be reproduced without neglecting exchange (Fock) contributions. Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet been developed, leaving yet unknown its predictions for phase transitions and thermal excitations in both stable and weakly bound nuclei. Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWS) basis considering two kinds of pairing interactions: finite or zero range. Such a model is appropriate for describing stable as well as loosely bound nuclei since the basis states have correct asymptotic behaviour for large spatial distributions. Results: Systematic FT-RH(F)B calculations are performed for several semi-magic isotopic/isotonic chains comparing the predictions of a large number of Lagrangians, among which are PKA1, PKO1 and DD-ME2. It is found that the critical temperature for a pairing transition generally follows the rule $T_c = 0.60Delta(0)$ for a finite-range pairing force and $T_c = 0.57Delta(0)$ for a contact pairing force, where $Delta(0)$ is the pairing gap at zero temperature. Two types of pairing persistence are analysed: type I pairing persistence occurs in closed subshell nuclei while type II pairing persistence can occur in loosely bound nuclei strongly coupled to the continuum states. Conclusions: This first FT-RHFB calculation shows very interesting features of the pairing correlations at finite temperature and in finite systems such as pairing re-entrance and pairing persistence.
Background: The Density-constraint Time-dependent Hartree-Fock method is currently the tool of choice to predict fusion cross-sections. However, it does not include pairing correlations, which have been found recently to play an important role. Purpose: To describe the fusion cross-section with a method that includes the superfluidity and to understand the impact of pairing on both the fusion barrier and cross-section. Method: The density-constraint method is tested first on the following reactions without pairing, $^{16}$O+$^{16}$O and $^{40}$Ca+$^{40}$Ca. A new method is developed, the Density-constraint Time-dependent Hartree-Fock-Bogoliubov method. Using the Gogny-TDHFB code, it is applied to the reactions $^{20}$O+$^{20}$O and $^{44}$Ca+$^{44}$Ca. Results: The Gogny approach for systems without pairing reproduces the experimental data well. The DC-TDHFB method is coherent with the TDHFB fusion threshold. The effect of the phase-lock mechanism is shown for those reactions. Conclusions: The DC-TDHFB method is a useful new tool to determine the fusion potential between superfluid systems and to deduce their fusion cross-sections.
We have explored the occurrence of the spherical shell closures for superheavy nuclei in the framework of the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. Shell effects are characterized in terms of two-nucleon gaps $delta_{2n(p)}$. Although the results depend slightly on the effective Lagrangians used, the general set of magic numbers beyond $^{208}$Pb are predicted to be $Z = 120$, $138$ for protons and $N = 172$, 184, 228 and 258 for neutrons, respectively. Specifically the RHFB calculations favor the nuclide $^{304}$120 as the next spherical doubly magic one beyond $^{208}$Pb. Shell effects are sensitive to various terms of the mean-field, such as the spin-orbit coupling, the scalar and effective masses.
We solve the Hartree-Fock-Bogoliubov (HFB) equations for a spherical mean field and a pairing potential with the inverse Hamiltonian method, which we have developed for the solution of the Dirac equation. This method is based on the variational principle for the inverse Hamiltonian, and is applicable to Hamiltonians that are bound neither from above nor below. We demonstrate that the method works well not only for the Dirac but also for the HFB equations.