Do you want to publish a course? Click here

Memory Efficient Class-Incremental Learning for Image Classification

68   0   0.0 ( 0 )
 Added by Xi Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the memory-resource-limited constraints, class-incremental learning (CIL) usually suffers from the catastrophic forgetting problem when updating the joint classification model on the arrival of newly added classes. To cope with the forgetting problem, many CIL methods transfer the knowledge of old classes by preserving some exemplar samples into the size-constrained memory buffer. To utilize the memory buffer more efficiently, we propose to keep more auxiliary low-fidelity exemplar samples rather than the original real high-fidelity exemplar samples. Such a memory-efficient exemplar preserving scheme makes the old-class knowledge transfer more effective. However, the low-fidelity exemplar samples are often distributed in a different domain away from that of the original exemplar samples, that is, a domain shift. To alleviate this problem, we propose a duplet learning scheme that seeks to construct domain-compatible feature extractors and classifiers, which greatly narrows down the above domain gap. As a result, these low-fidelity auxiliary exemplar samples have the ability to moderately replace the original exemplar samples with a lower memory cost. In addition, we present a robust classifier adaptation scheme, which further refines the biased classifier (learned with the samples containing distillation label knowledge about old classes) with the help of the samples of pure true class labels. Experimental results demonstrate the effectiveness of this work against the state-of-the-art approaches.



rate research

Read More

We describe federated reconnaissance, a class of learning problems in which distributed clients learn new concepts independently and communicate that knowledge efficiently. In particular, we propose an evaluation framework and methodological baseline for a system in which each client is expected to learn a growing set of classes and communicate knowledge of those classes efficiently with other clients, such that, after knowledge merging, the clients should be able to accurately discriminate between classes in the superset of classes observed by the set of clients. We compare a range of learning algorithms for this problem and find that prototypical networks are a strong approach in that they are robust to catastrophic forgetting while incorporating new information efficiently. Furthermore, we show that the online averaging of prototype vectors is effective for client model merging and requires only a small amount of communication overhead, memory, and update time per class with no gradient-based learning or hyperparameter tuning. Additionally, to put our results in context, we find that a simple, prototypical network with four convolutional layers significantly outperforms complex, state of the art continual learning algorithms, increasing the accuracy by over 22% after learning 600 Omniglot classes and over 33% after learning 20 mini-ImageNet classes incrementally. These results have important implications for federated reconnaissance and continual learning more generally by demonstrating that communicating feature vectors is an efficient, robust, and effective means for distributed, continual learning.
Regularization-based methods are beneficial to alleviate the catastrophic forgetting problem in class-incremental learning. With the absence of old task images, they often assume that old knowledge is well preserved if the classifier produces similar output on new images. In this paper, we find that their effectiveness largely depends on the nature of old classes: they work well on classes that are easily distinguishable between each other but may fail on more fine-grained ones, e.g., boy and girl. In spirit, such methods project new data onto the feature space spanned by the weight vectors in the fully connected layer, corresponding to old classes. The resulting projections would be similar on fine-grained old classes, and as a consequence the new classifier will gradually lose the discriminative ability on these classes. To address this issue, we propose a memory-free generative replay strategy to preserve the fine-grained old classes characteristics by generating representative old images directly from the old classifier and combined with new data for new classifier training. To solve the homogenization problem of the generated samples, we also propose a diversity loss that maximizes Kullback Leibler (KL) divergence between generated samples. Our method is best complemented by prior regularization-based methods proved to be effective for easily distinguishable old classes. We validate the above design and insights on CUB-200-2011, Caltech-101, CIFAR-100 and Tiny ImageNet and show that our strategy outperforms existing memory-free methods with a clear margin. Code is available at https://github.com/xmengxin/MFGR
Due to its low storage cost and fast query speed, hashing has been widely used in large-scale image retrieval tasks. Hash bucket search returns data points within a given Hamming radius to each query, which can enable search at a constant or sub-linear time cost. However, existing hashing methods cannot achieve satisfactory retrieval performance for hash bucket search in complex scenarios, since they learn only one hash code for each image. More specifically, by using one hash code to represent one image, existing methods might fail to put similar image pairs to the buckets with a small Hamming distance to the query when the semantic information of images is complex. As a result, a large number of hash buckets need to be visited for retrieving similar images, based on the learned codes. This will deteriorate the efficiency of hash bucket search. In this paper, we propose a novel hashing framework, called multiple code hashing (MCH), to improve the performance of hash bucket search. The main idea of MCH is to learn multiple hash codes for each image, with each code representing a different region of the image. Furthermore, we propose a deep reinforcement learning algorithm to learn the parameters in MCH. To the best of our knowledge, this is the first work that proposes to learn multiple hash codes for each image in image retrieval. Experiments demonstrate that MCH can achieve a significant improvement in hash bucket search, compared with existing methods that learn only one hash code for each image.
Majority of the modern meta-learning methods for few-shot classification tasks operate in two phases: a meta-training phase where the meta-learner learns a generic representation by solving multiple few-shot tasks sampled from a large dataset and a testing phase, where the meta-learner leverages its learnt internal representation for a specific few-shot task involving classes which were not seen during the meta-training phase. To the best of our knowledge, all such meta-learning methods use a single base dataset for meta-training to sample tasks from and do not adapt the algorithm after meta-training. This strategy may not scale to real-world use-cases where the meta-learner does not potentially have access to the full meta-training dataset from the very beginning and we need to update the meta-learner in an incremental fashion when additional training data becomes available. Through our experimental setup, we develop a notion of incremental learning during the meta-training phase of meta-learning and propose a method which can be used with multiple existing metric-based meta-learning algorithms. Experimental results on benchmark dataset show that our approach performs favorably at test time as compared to training a model with the full meta-training set and incurs negligible amount of catastrophic forgetting
Machine learning classifiers are often trained to recognize a set of pre-defined classes. However, in many applications, it is often desirable to have the flexibility of learning additional concepts, with limited data and without re-training on the full training set. This paper addresses this problem, incremental few-shot learning, where a regular classification network has already been trained to recognize a set of base classes, and several extra novel classes are being considered, each with only a few labeled examples. After learning the novel classes, the model is then evaluated on the overall classification performance on both base and novel classes. To this end, we propose a meta-learning model, the Attention Attractor Network, which regularizes the learning of novel classes. In each episode, we train a set of new weights to recognize novel classes until they converge, and we show that the technique of recurrent back-propagation can back-propagate through the optimization process and facilitate the learning of these parameters. We demonstrate that the learned attractor network can help recognize novel classes while remembering old classes without the need to review the original training set, outperforming various baselines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا