Do you want to publish a course? Click here

Does the structure of Pop III supernova ejecta affect the elemental abundance of extremely metal-poor stars?

66   0   0.0 ( 0 )
 Added by Gen Chiaki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first generation of metal-free (Pop III) stars are crucial for the production of heavy elements in the earliest phase of structure formation. Their mass scale can be derived from the elemental abundance pattern of extremely metal-poor (EMP) stars, which are assumed to inherit the abundances of uniformly mixed supernova (SN) ejecta. If the expanding ejecta maintains its initial stratified structure, the elemental abundance pattern of EMP stars might be different from that from uniform ejecta. In this work we perform numerical simulations of the metal enrichment from stratified ejecta for normal core-collapse SNe (CCSNe) with a progenitor mass $25 {rm M}_{bigodot}$ and explosion energies 0.7--10 B ($1 {rm B} = 10^{51}$ erg). We find that SN shells fall back into the central minihalo in all models. In the recollapsing clouds, the abundance ratio ${rm [M/Fe]}$ for stratified ejecta is different from the one for uniform ejecta only within $pm 0.4$ dex for any element M. We also find that, for the largest explosion energy (10 B), a neighboring halo is also enriched. Only the outer layers containing Ca or lighter elements reach the halo, where ${rm [C/Fe]} = 1.49$. This means that C-enhanced metal-poor (CEMP) stars can form from the CCSN even with an average abundance ratio ${rm [C/Fe]} = -0.65$.



rate research

Read More

We present a simulation of the long-term evolution of a Population III supernova remnant in a cosmological minihalo. Employing passive Lagrangian tracer particles, we investigate how chemical stratification and anisotropy in the explosion can affect the abundances of the first low-mass, metal-enriched stars. We find that reverse shock heating can leave the inner mass shells at entropies too high to cool, leading to carbon-enhancement in the re-collapsing gas. This hydrodynamic selection effect could explain the observed incidence of carbon-enhanced metal-poor (CEMP) stars at low metallicity. We further explore how anisotropic ejecta distributions, recently seen in direct numerical simulations of core-collapse explosions, may translate to abundances in metal-poor stars. We find that some of the observed scatter in the Population II abundance ratios can be explained by an incomplete mixing of supernova ejecta, even in the case of only one contributing enrichment event. We demonstrate that the customary hypothesis of fully-mixed ejecta clearly fails if post-explosion hydrodynamics prefers the recycling of some nucleosynthetic products over others. Furthermore, to fully exploit the stellar-archaeological program of constraining the Pop III initial mass function from the observed Pop II abundances, considering these hydrodynamical transport effects is crucial. We discuss applications to the rich chemical structure of ultra-faint dwarf satellite galaxies, to be probed in unprecedented detail with upcoming spectroscopic surveys.
After the Big Bang nucleosynthesis, the first heavy element enrichment in the Universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well-reproduce individually the abundance patterns of 48 such metal-poor stars as [Fe/H] $mathrel{rlap{lower 4pt hbox{$sim$}}raise 1pt hbox {$<$}}-3.5$. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C+N)/Fe] and [(C+N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: The distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the resent day SNe but shows an extended tail down to $sim10^{-2}-10^{-5}M_odot$, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present day stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early Universe.
60 - Gen Chiaki , Hajime Susa , 2018
Metal enrichment by the first-generation (Pop III) stars is the very first step of the matter cycle in the structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by the Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), M_halo , and Pop III stars, M_PopIII . We find that the metal-rich ejecta reaches neighbouring haloes and external enrichment (EE) occurs when the halo binding energy is sufficiently below the SN explosion energy, E_SN . The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta falls back and recollapses to form enriched cloud, i.e. internal enrichment (IE) process takes place. In case that a Pop III star explodes as a core-collapse SNe (CCSNe), MHs undergo IE, and the metallicity in the recollapsing region is -5 < [Fe/H] < -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass range of MHs, consistent with no observational sign of PISNe among EMP stars.
We investigate hydrodynamical and nucleosynthetic properties of the jet-induced explosion of a population III $40M_odot$ star and compare the abundance patterns of the yields with those of the metal-poor stars. We conclude that (1) the ejection of Fe-peak products and the fallback of unprocessed materials can account for the abundance patterns of the extremely metal-poor (EMP) stars and that (2) the jet-induced explosion with different energy deposition rates can explain the diversity of the abundance patterns of the metal-poor stars. Furthermore, the abundance distribution after the explosion and the angular dependence of the yield are shown for the models with high and low energy deposition rates $dot{E}_{rm dep}=120times10^{51} {rm ergs s^{-1}}$ and $1.5times10^{51} {rm ergs s^{-1}}$. We also find that the peculiar abundance pattern of a Si-deficient metal-poor star HE 1424--0241 can be reproduced by the angle-delimited yield for $theta=30^circ-35^circ$ of the model with $dot{E}_{rm dep}=120times10^{51} {rm ergs s^{-1}}$.
The Pristine survey is a narrow-band, photometric survey focused around the wavelength region of the Ca II H & K absorption lines, designed to efficiently search for extremely metal-poor stars. In this work, we use the first results of a medium-resolution spectroscopic follow-up to refine the selection criteria for finding extremely metal-poor stars ($textrm{[Fe/H]} leq -3.0$) in the Pristine survey. We consider methods by which stars can be selected from available broad-band and infrared photometry plus the additional Pristine narrow-band photometry. The spectroscopic sample presented in this paper consists of 205 stars in the magnitude range $14 < V < 18$. Applying the photometric selection criteria cuts the sample down to 149 stars, and from these we report a success rate of 70% for finding stars with $textrm{[Fe/H]} leq -2.5$ and 22% for finding stars with $textrm{[Fe/H]} leq -3.0$. These statistics compare favourably with other surveys that search for extremely metal-poor stars, namely an improvement by a factor of $sim 4-5$ for recovering stars with $textrm{[Fe/H]} leq -3.0$. In addition, Pristine covers a fainter magnitude range than its predecessors, and can thus probe deeper into the Galactic halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا