Do you want to publish a course? Click here

Radiative Emission Mechanisms of Tidal Disruption Events

77   0   0.0 ( 0 )
 Added by Nathaniel Roth
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe how the various outcomes of stellar tidal disruption give rise to observable radiation. We separately consider the cases where gas circularizes rapidly into an accretion disc, as well as the case when shocked debris streams provide the observable emission without having fully circularized. For the rapid circularization case, we describe how outflows, absorption by reprocessing layers, and Comptonization can cause the observed radiation to depart from that of a bare disc, possibly giving rise to the observed optical/UV emission along with soft X-rays from the disc. If, instead, most of the debris follows highly eccentric orbits for a significant time, many properties of the observed optical/UV emission can be explained by the scale of those eccentric orbits and the shocks embedded in the debris flow near orbital apocenter. In this picture, soft X-ray emission at early times results from the smaller amount of debris mass deflected into a compact accretion disc by weak shocks near the stellar pericenter. A general proposal for the near-constancy of the ultraviolet/optical color temperatures is provided, by linking it to incomplete thermalization of radiation in the atmosphere of the emitting region. We also briefly discuss the radio signals from the interaction of unbound debris and jets with the black hole environment.



rate research

Read More

95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probing otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
159 - Giuseppe Lodato 2020
Numerical simulations have historically played a major role in understanding the hydrodynamics of the tidal disruption process. Given the complexity of the geometry of the system, the challenges posed by the problem have indeed stimulated much work on the numerical side. Smoothed Particles Hydrodynamics methods, for example, have seen their very first applications in the context of tidal disruption and still play a major role to this day. Likewise, initial attempts at simulating the evolution of the disrupted star with the so-called affine method have been historically very useful. In this Chapter, we provide an overview of the numerical techniques used in the field and of their limitations, and summarize the work that has been done to simulate numerically the tidal disruption process.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the growth of optical transient surveys has led to the identification of a new class of optical transients occurring exclusively in galaxy centers, many of which are considered to be TDEs. Here we review the observed properties of these events, identified based on a shared set of both photometric and spectroscopic properties. We present a homogeneous analysis of 33 sources that we classify as robust TDEs, and which we divide into classes. The criteria used here to classify TDEs will possibly get updated as new samples are collected and potential additional diversity of TDEs is revealed. We also summarize current measurements of the optical-ultraviolet TDE rate, as well as the mass function and luminosity function. Many open questions exist regarding the current sample of events. We anticipate that the search for answers will unlock new insights in a variety of fields, from accretion physics to galaxy evolution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا