No Arabic abstract
Since very few contributions to the development of an unified memory orchestration framework for efficient management of both host and remote idle memory have been made, we present Valet, an efficient approach to orchestration of host and remote shared memory for improving performance of memory intensive workloads. The paper makes three original contributions. First, we redesign the data flow in the critical path by introducing a host-coordinated memory pool that works as a local cache to reduce the latency in the critical path of the host and remote memory orchestration. Second, Valet utilizes unused local memory across containers by managing local memory via Valet host-coordinated memory pool, which allows containers to dynamically expand and shrink their memory allocations according to the workload demands. Third, Valet provides an efficient remote memory reclaiming technique on remote peers, based on two optimizations: (1) an activity-based victim selection scheme to allow the least-active-chunk of data to be selected for serving the eviction requests and (2) a migration protocol to move the least-active-chunk of data to less-memory-pressured remote node. As a result, Valet can effectively reduce the performance impact and migration overhead on local nodes. Our extensive experiments on both NoSQL systems and Machine Learning (ML) workloads show that Valet outperforms existing representative remote paging systems with up to 226X throughput improvement and up to 98% latency decrease over conventional OS swap facility for big data and ML workloads, and by up to 5.5X throughput improvement and up to 78.4% latency decrease over the state-of-the-art remote paging systems. Valet is open sourced at https://github.com/git-disl/Valet.
We present RDMAbox, a set of low level RDMA optimizations that provide better performance than previous approaches. The optimizations are packaged in easy-to-use kernel and user space libraries for applications and systems in data center. We demonstrate the flexibility and effectiveness of RDMAbox by implementing a kernel remote paging system and a user space file system using RDMAbox. RDMAbox employs two optimization techniques. First, we suggest RDMA request merging and chaining to further reduce the total number of I/O operations to the RDMA NIC. The I/O merge queue at the same time functions as a traffic regulator to enforce admission control and avoid overloading the NIC. Second, we propose Adaptive Polling to achieve higher efficiency of polling Work Completion than existing busy polling while maintaining the low CPU overhead of event trigger. Our implementation of a remote paging system with RDMAbox outperforms existing representative solutions with up to 4? throughput improvement and up to 83% decrease in average tail latency in bigdata workloads, and up to 83% reduction in completion time in machine learning workloads. Our implementation of a user space file system based on RDMAbox achieves up to 5.9? higher throughput over existing representative solutions.
ILU(k) is a commonly used preconditioner for iterative linear solvers for sparse, non-symmetric systems. It is often preferred for the sake of its stability. We present TPILU(k), the first efficiently parallelized ILU(k) preconditioner that maintains this important stability property. Even better, TPILU(k) preconditioning produces an answer that is bit-compatible with the sequential ILU(k) preconditioning. In terms of performance, the TPILU(k) preconditioning is shown to run faster whenever more cores are made available to it --- while continuing to be as stable as sequential ILU(k). This is in contrast to some competing methods that may become unstable if the degree of thread parallelism is raised too far. Where Block Jacobi ILU(k) fails in an application, it can be replaced by TPILU(k) in order to maintain good performance, while also achieving full stability. As a further optimization, TPILU(k) offers an optional level-based incomplete inverse method as a fast approximation for the original ILU(k) preconditioned matrix. Although this enhancement is not bit-compatible with classical ILU(k), it is bit-compatible with the output from the single-threaded version of the same algorithm. In experiments on a 16-core computer, the enhanced TPILU(k)-based iterative linear solver performed up to 9 times faster. As we approach an era of many-core computing, the ability to efficiently take advantage of many cores will become ever more important. TPILU(k) also demonstrates good performance on cluster or Grid. For example, the new algorithm achieves 50 times speedup with 80 nodes for general sparse matrices of dimension 160,000 that are diagonally dominant.
We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms using MapReduce and a distributed hash table service. This extension allows us to give new graph algorithms with much lower round complexities compared to the best known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in $O(1)$ rounds and connectivity/minimum spanning tree in $O(loglog_{m/n} n)$ rounds both using $O(n^delta)$ space per machine for constant $delta < 1$. In the same memory regime for MPC, the best known algorithms for these problems require polylog $n$ rounds. Our results imply that the 2-Cycle conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model.
Blockchain technologies can enable secure computing environments among mistrusting parties. Permissioned blockchains are particularly enlightened by companies, enterprises, and government agencies due to their efficiency, customizability, and governance-friendly features. Obviously, seamlessly fusing blockchain and cloud computing can significantly benefit permissioned blockchains; nevertheless, most blockchains implemented on clouds are originally designed for loosely-coupled networks where nodes communicate asynchronously, failing to take advantages of the closely-coupled nature of cloud servers. In this paper, we propose an innovative cloud-oriented blockchain -- CloudChain, which is a modularized three-layer system composed of the network layer, consensus layer, and blockchain layer. CloudChain is based on a shared-memory model where nodes communicate synchronously by direct memory accesses. We realize the shared-memory model with the Remote Direct Memory Access technology, based on which we propose a shared-memory consensus algorithm to ensure presistence and liveness, the two crucial blockchain security properties countering Byzantine nodes. We also implement a CloudChain prototype based on a RoCEv2-based testbed to experimentally validate our design, and the results verify the feasibility and efficiency of CloudChain.
Coalescing RDMA and Persistent Memory (PM) delivers high end-to-end performance for networked storage systems, which requires rethinking the design of efficient hash structures. In general, existing hashing schemes separately optimize RDMA and PM, thus partially addressing the problems of RDMA Access Amplification and High-Overhead PM Consistency. In order to address these problems, we propose a continuity hashing, which is a one-stone-two-birds design to optimize both RDMA and PM. The continuity hashing leverages a fine-grained contiguous shared region, called SBuckets, to provide standby positions for the neighbouring two buckets in case of hash collisions. In the continuity hashing, remote read only needs a single RDMA read to directly fetch the home bucket and the neighbouring SBuckets, which contain all the positions of maintaining a key-value item, thus alleviating RDMA access amplification. Continuity hashing further leverages indicators that can be atomically modified to support log-free PM consistency for all the write operations. Evaluation results demonstrate that compared with state-of-the-art schemes, continuity hashing achieves high throughput (i.e., 1.45X -- 2.43X improvement), low latency (about 1.7X speedup) and the smallest number of PM writes with various workloads, while has acceptable load factors of about 70%.