Do you want to publish a course? Click here

CloudChain: A Cloud Blockchain Using Shared Memory Consensus and RDMA

82   0   0.0 ( 0 )
 Added by Minghui Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Blockchain technologies can enable secure computing environments among mistrusting parties. Permissioned blockchains are particularly enlightened by companies, enterprises, and government agencies due to their efficiency, customizability, and governance-friendly features. Obviously, seamlessly fusing blockchain and cloud computing can significantly benefit permissioned blockchains; nevertheless, most blockchains implemented on clouds are originally designed for loosely-coupled networks where nodes communicate asynchronously, failing to take advantages of the closely-coupled nature of cloud servers. In this paper, we propose an innovative cloud-oriented blockchain -- CloudChain, which is a modularized three-layer system composed of the network layer, consensus layer, and blockchain layer. CloudChain is based on a shared-memory model where nodes communicate synchronously by direct memory accesses. We realize the shared-memory model with the Remote Direct Memory Access technology, based on which we propose a shared-memory consensus algorithm to ensure presistence and liveness, the two crucial blockchain security properties countering Byzantine nodes. We also implement a CloudChain prototype based on a RoCEv2-based testbed to experimentally validate our design, and the results verify the feasibility and efficiency of CloudChain.



rate research

Read More

In recent years, blockchain technology has received unparalleled attention from academia, industry, and governments all around the world. It is considered a technological breakthrough anticipated to disrupt several application domains. This has resulted in a plethora of blockchain systems for various purposes. However, many of these blockchain systems suffer from serious shortcomings related to their performance and security, which need to be addressed before any wide-scale adoption can be achieved. A crucial component of any blockchain system is its underlying consensus algorithm, which in many ways, determines its performance and security. Therefore, to address the limitations of different blockchain systems, several existing as well novel consensus algorithms have been introduced. A systematic analysis of these algorithms will help to understand how and why any particular blockchain performs the way it functions. However, the existing studies of consensus algorithms are not comprehensive. Those studies have incomplete discussions on the properties of the algorithms and fail to analyse several major blockchain consensus algorithms in terms of their scopes. This article fills this gap by analysing a wide range of consensus algorithms using a comprehensive taxonomy of properties and by examining the implications of different issues still prevalent in consensus algorithms in detail. The result of the analysis is presented in tabular formats, which provides a visual illustration of these algorithms in a meaningful way. We have also analysed more than hundred top crypto-currencies belonging to different categories of consensus algorithms to understand their properties and to implicate different trends in these crypto-currencies. Finally, we have presented a decision tree of algorithms to be used as a tool to test the suitability of consensus algorithms under different criteria.
100 - Juhyun Bae , Ling Liu , Yanzhao Wu 2021
We present RDMAbox, a set of low level RDMA optimizations that provide better performance than previous approaches. The optimizations are packaged in easy-to-use kernel and user space libraries for applications and systems in data center. We demonstrate the flexibility and effectiveness of RDMAbox by implementing a kernel remote paging system and a user space file system using RDMAbox. RDMAbox employs two optimization techniques. First, we suggest RDMA request merging and chaining to further reduce the total number of I/O operations to the RDMA NIC. The I/O merge queue at the same time functions as a traffic regulator to enforce admission control and avoid overloading the NIC. Second, we propose Adaptive Polling to achieve higher efficiency of polling Work Completion than existing busy polling while maintaining the low CPU overhead of event trigger. Our implementation of a remote paging system with RDMAbox outperforms existing representative solutions with up to 4? throughput improvement and up to 83% decrease in average tail latency in bigdata workloads, and up to 83% reduction in completion time in machine learning workloads. Our implementation of a user space file system based on RDMAbox achieves up to 5.9? higher throughput over existing representative solutions.
Blockchain and general purpose distributed ledgers are foundational technologies which bring significant innovation in the infrastructures and other underpinnings of our socio-economic systems. These P2P technologies are able to securely diffuse information within and across networks, without need for trustees or central authorities to enforce consensus. In this contribution, we propose a minimalistic stochastic model to understand the dynamics of blockchain-based consensus. By leveraging on random-walk theory, we model block propagation delay on different network topologies and provide a classification of blockchain systems in terms of two emergent properties. Firstly, we identify two performing regimes: a functional regime corresponding to an optimal system function; and a non-functional regime characterised by a congested or branched state of sub-optimal blockchains. Secondly, we discover a phase transition during the emergence of consensus and numerically investigate the corresponding critical point. Our results provide important insights into the consensus mechanism and sub-optimal states in decentralised systems.
80 - Xinxin Liu , Yu Hua , Rong Bai 2021
Coalescing RDMA and Persistent Memory (PM) delivers high end-to-end performance for networked storage systems, which requires rethinking the design of efficient hash structures. In general, existing hashing schemes separately optimize RDMA and PM, thus partially addressing the problems of RDMA Access Amplification and High-Overhead PM Consistency. In order to address these problems, we propose a continuity hashing, which is a one-stone-two-birds design to optimize both RDMA and PM. The continuity hashing leverages a fine-grained contiguous shared region, called SBuckets, to provide standby positions for the neighbouring two buckets in case of hash collisions. In the continuity hashing, remote read only needs a single RDMA read to directly fetch the home bucket and the neighbouring SBuckets, which contain all the positions of maintaining a key-value item, thus alleviating RDMA access amplification. Continuity hashing further leverages indicators that can be atomically modified to support log-free PM consistency for all the write operations. Evaluation results demonstrate that compared with state-of-the-art schemes, continuity hashing achieves high throughput (i.e., 1.45X -- 2.43X improvement), low latency (about 1.7X speedup) and the smallest number of PM writes with various workloads, while has acceptable load factors of about 70%.
Synchronous Mirroring (SM) is a standard approach to building highly-available and fault-tolerant enterprise storage systems. SM ensures strong data consistency by maintaining multiple exact data replicas and synchronously propagating every update to all of them. Such strong consistency provides fault tolerance guarantees and a simple programming model coveted by enterprise system designers. For current storage devices, SM comes at modest performance overheads. This is because performing both local and remote updates simultaneously is only marginally slower than performing just local updates, due to the relatively slow performance of accesses to storage in todays systems. However, emerging persistent memory and ultra-low-latency network technologies necessitate a careful re-evaluation of the existing SM techniques, as these technologies present fundamentally different latency characteristics compared than their traditional counterparts. In addition to that, existing low-latency network technologies, such as Remote Direct Memory Access (RDMA), provide limited ordering guarantees and do not provide durability guarantees necessary for SM. To evaluate the performance implications of RDMA-based SM, we develop a rigorous testing framework that is based on emulated persistent memory. Our testing framework makes use of two different tools: (i) a configurable microbenchmark and (ii) a modified version of the WHISPER benchmark suite, which comprises a set of common cloud applications. Using this framework, we find that recently proposed RDMA primitives, such as remote commit, provide correctness guarantees, but do not take full advantage of the asynchronous nature of RDMA hardware. To this end, we propose new primitives enabling efficient and correct SM over RDMA, and use these primitives to develop two new techniques delivering high-performance SM of persistent memories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا