No Arabic abstract
Finite-$N$ effects unavoidably drive the long-term evolution of long-range interacting $N$-body systems. The Balescu-Lenard kinetic equation generically describes this process sourced by ${1/N}$ effects but this kinetic operator exactly vanishes by symmetry for one-dimensional homogeneous systems: such systems undergo a kinetic blocking and cannot relax as a whole at this order in ${1/N}$. It is therefore only through the much weaker ${1/N^{2}}$ effects, sourced by three-body correlations, that these systems can relax, leading to a much slower evolution. In the limit where collective effects can be neglected, but for an arbitrary pairwise interaction potential, we derive a closed and explicit kinetic equation describing this very long-term evolution. We show how this kinetic equation satisfies an $H$-theorem while conserving particle number and energy, ensuring the unavoidable relaxation of the system towards the Boltzmann equilibrium distribution. Provided that the interaction is long-range, we also show how this equation cannot suffer from further kinetic blocking, i.e., the ${1/N^{2}}$ dynamics is always effective. Finally, we illustrate how this equation quantitatively matches measurements from direct $N$-body simulations.
The long-term dynamics of long-range interacting $N$-body systems can generically be described by the Balescu-Lenard kinetic equation. However, for ${1D}$ homogeneous systems, this collision operator exactly vanishes by symmetry. These systems undergo a kinetic blocking, and cannot relax as a whole under ${1/N}$ resonant effects. As a result, these systems can only relax under ${1/N^{2}}$ effects, and their relaxation is drastically slowed down. In the context of the homogeneous Hamiltonian Mean Field model, we present a new, closed and explicit kinetic equation describing self-consistently the very long-term evolution of such systems, in the limit where collective effects can be neglected, i.e. for dynamically hot initial conditions. We show in particular how that kinetic equation satisfies an $H$-Theorem that guarantees the unavoidable relaxation to the Boltzmann equilibrium distribution. Finally, we illustrate how that kinetic equation quantitatively matches with the measurements from direct $N$-body simulations.
Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand canonical ones: the more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability $C/ r^{1+sigma}$, where $r$ is the distance length between distinct sites. We introduce and test an order $N$ Monte Carlo algorithm and we determine as a function of $sigma$ the critical value $C_{c}$ at which percolation occurs. The critical exponents in the range $0<sigma<1$ are reported and compared with mean-field and $varepsilon$-expansion results. Our analysis is in agreement, up to a numerical precision $approx 10^{-3}$, with the mean field result for the anomalous dimension $eta=2-sigma$, showing that there is no correction to $eta$ due to correlation effects.
In this note we study metastability phenomena for a class of long-range Ising models in one-dimension. We prove that, under suitable general conditions, the configuration -1 is the only metastable state and we estimate the mean exit time. Moreover, we illustrate the theory with two examples (exponentially and polynomially decaying interaction) and we show that the critical droplet can be macroscopic or mesoscopic, according to the value of the external magnetic field.