This project integrates infrared and RGB imagery to produce dense 3D environment models reconstructed from multiple views. The resulting 3D map contains both thermal and RGB information which can be used in robotic fire-fighting applications to identify victims and active fire areas.
Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.
Hyperspectral imaging enables versatile applications due to its competence in capturing abundant spatial and spectral information, which are crucial for identifying substances. However, the devices for acquiring hyperspectral images are expensive and complicated. Therefore, many alternative spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from lower-cost, more available RGB images. We present a thorough investigation of these state-of-the-art spectral reconstruction methods from the widespread RGB images. A systematic study and comparison of more than 25 methods has revealed that most of the data-driven deep learning methods are superior to prior-based methods in terms of reconstruction accuracy and quality despite lower speeds. This comprehensive review can serve as a fruitful reference source for peer researchers, thus further inspiring future development directions in related domains.
Every day, burning buildings threaten the lives of occupants and first responders trying to save them. Quick action is of essence, but some areas might not be accessible or too dangerous to enter. Robotic systems have become a promising addition to firefighting, but at this stage, they are mostly manually controlled, which is error-prone and requires specially trained personal. We present two systems for autonomous firefighting from air and ground we developed for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020. The systems use LiDAR for reliable localization within narrow, potentially GNSS-restricted environments while maneuvering close to obstacles. Measurements from LiDAR and thermal cameras are fused to track fires, while relative navigation ensures successful extinguishing. We analyze and discuss our successful participation during the MBZIRC 2020, present further experiments, and provide insights into our lessons learned from the competition.
Capturing visual image with a hyperspectral camera has been successfully applied to many areas due to its narrow-band imaging technology. Hyperspectral reconstruction from RGB images denotes a reverse process of hyperspectral imaging by discovering an inverse response function. Current works mainly map RGB images directly to corresponding spectrum but do not consider context information explicitly. Moreover, the use of encoder-decoder pair in current algorithms leads to loss of information. To address these problems, we propose a 4-level Hierarchical Regression Network (HRNet) with PixelShuffle layer as inter-level interaction. Furthermore, we adopt a residual dense block to remove artifacts of real world RGB images and a residual global block to build attention mechanism for enlarging perceptive field. We evaluate proposed HRNet with other architectures and techniques by participating in NTIRE 2020 Challenge on Spectral Reconstruction from RGB Images. The HRNet is the winning method of track 2 - real world images and ranks 3rd on track 1 - clean images. Please visit the project web page https://github.com/zhaoyuzhi/Hierarchical-Regression-Network-for-Spectral-Reconstruction-from-RGB-Images to try our codes and pre-trained models.
We propose a novel approach to handling the ambiguity in elevation angle associated with the observations of a forward looking multi-beam imaging sonar, and the challenges it poses for performing an accurate 3D reconstruction. We utilize a pair of sonars with orthogonal axes of uncertainty to independently observe the same points in the environment from two different perspectives, and associate these observations. Using these concurrent observations, we can create a dense, fully defined point cloud at every time-step to aid in reconstructing the 3D geometry of underwater scenes. We will evaluate our method in the context of the current state of the art, for which strong assumptions on object geometry limit applicability to generalized 3D scenes. We will discuss results from laboratory tests that quantitatively benchmark our algorithms reconstruction capabilities, and results from a real-world, tidal river basin which qualitatively demonstrate our ability to reconstruct a cluttered field of underwater objects.