No Arabic abstract
It is proved that a finite intersection of special preenveloping ideals in an exact category $({mathcal A}; {mathcal E})$ is a special preenveloping ideal. Dually, a finite intersection of special precovering ideals is a special precovering ideal. A counterexample of Happel and Unger shows that the analogous statement about special preenveloping subcategories does not hold in classical approximation theory. If the exact category has exact coproducts, resp., exact products, these results extend to intersections of infinite families of special peenveloping, resp., special precovering, ideals. These techniques yield the Bongartz-Eklof-Trlifaj Lemma: if $a colon A to B$ is a morphism in ${mathcal A},$ then the ideal $a^{perp}$ is special preenveloping. This is an ideal version of the Eklof-Trlifaj Lemma, but the proof is based on that of Bongartz Lemma. The main consequence is that the ideal cotorsion pair generated by a small ideal is complete.
Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.
We develop category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in topology of compact spaces.
In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of $bz^noplus T$ with no invertible elements, where $T$ is a finite abelian group. We also characterize the lattice ideals that are set-theoretic complete intersections on binomials.
Let $Lsubset mathbb{Z}^n$ be a lattice and $I_L=langle x^{bf u}-x^{bf v}: {bf u}-{bf v}in Lrangle$ be the corresponding lattice ideal in $Bbbk[x_1,ldots, x_n]$, where $Bbbk$ is a field. In this paper we describe minimal binomial generating sets of $I_L$ and their invariants. We use as a main tool a graph construction on equivalence classes of fibers of $I_L$. As one application of the theory developed we characterize binomial complete intersection lattice ideals, a longstanding open problem in the case of non-positive lattices.
Many special classes of simplicial sets, such as the nerves of categories or groupoids, the 2-Segal sets of Dyckerhoff and Kapranov, and the (discrete) decomposition spaces of G{a}lvez, Kock, and Tonks, are characterized by the property of sending certain commuting squares in the simplex category $Delta$ to pullback squares of sets. We introduce weaker analogues of these properties called completeness conditions, which require squares in $Delta$ to be sent to weak pullbacks of sets, defined similarly to pullback squares but without the uniqueness property of induced maps. We show that some of these completeness conditions provide a simplicial set with lifts against certain subsets of simplices first introduced in the theory of database design. We also provide reduced criteria for checking these properties using factorization results for pushouts squares in $Delta$, which we characterize completely, along with several other classes of squares in $Delta$. Examples of simplicial sets with completeness conditions include quasicategories, Kan complexes, many of the compositories and gleaves of Flori and Fritz, and bar constructions for algebras of certain classes of monads. The latter is our motivating example which we discuss in a companion paper.