Do you want to publish a course? Click here

Minimal Generating Sets of Lattice Ideals

147   0   0.0 ( 0 )
 Added by Marius Vladoiu
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Let $Lsubset mathbb{Z}^n$ be a lattice and $I_L=langle x^{bf u}-x^{bf v}: {bf u}-{bf v}in Lrangle$ be the corresponding lattice ideal in $Bbbk[x_1,ldots, x_n]$, where $Bbbk$ is a field. In this paper we describe minimal binomial generating sets of $I_L$ and their invariants. We use as a main tool a graph construction on equivalence classes of fibers of $I_L$. As one application of the theory developed we characterize binomial complete intersection lattice ideals, a longstanding open problem in the case of non-positive lattices.



rate research

Read More

Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the primitive, the minimal, the indispensable and the fundamental binomials of the toric ideal $I_G$.
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of combined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
228 - Karel Casteels 2009
We take a graph theoretic approach to the problem of finding generators for those prime ideals of $mathcal{O}_q(mathcal{M}_{m,n}(mathbb{K}))$ which are invariant under the torus action ($mathbb{K}^*)^{m+n}$. Launois cite{launois3} has shown that the generators consist of certain quantum minors of the matrix of canonical generators of $mathcal{O}_q(mathcal{M}_{m,n}(mathbb{K}))$ and in cite{launois2} gives an algorithm to find them. In this paper we modify a classic result of Lindstr{o}m cite{lind} and Gessel-Viennot~cite{gv} to show that a quantum minor is in the generating set for a particular ideal if and only if we can find a particular set of vertex-disjoint directed paths in an associated directed graph.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We determine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
Minimal cellular resolutions of the edge ideals of cointerval hypergraphs are constructed. This class of d-uniform hypergraphs coincides with the complements of interval graphs (for the case d=2), and strictly contains the class of `strongly stable hypergraphs corresponding to pure shifted simplicial complexes. The polyhedral complexes supporting the resolutions are described as certain spaces of directed graph homomorphisms, and are realized as subcomplexes of mixed subdivisions of the Minkowski sums of simplices. Resolutions of more general hypergraphs are obtained by considering decompositions into cointerval hypergraphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا