Do you want to publish a course? Click here

Weakly Supervised 3D Object Detection from Point Clouds

138   0   0.0 ( 0 )
 Added by Zengyi Qin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A crucial task in scene understanding is 3D object detection, which aims to detect and localize the 3D bounding boxes of objects belonging to specific classes. Existing 3D object detectors heavily rely on annotated 3D bounding boxes during training, while these annotations could be expensive to obtain and only accessible in limited scenarios. Weakly supervised learning is a promising approach to reducing the annotation requirement, but existing weakly supervised object detectors are mostly for 2D detection rather than 3D. In this work, we propose VS3D, a framework for weakly supervised 3D object detection from point clouds without using any ground truth 3D bounding box for training. First, we introduce an unsupervised 3D proposal module that generates object proposals by leveraging normalized point cloud densities. Second, we present a cross-modal knowledge distillation strategy, where a convolutional neural network learns to predict the final results from the 3D object proposals by querying a teacher network pretrained on image datasets. Comprehensive experiments on the challenging KITTI dataset demonstrate the superior performance of our VS3D in diverse evaluation settings. The source code and pretrained models are publicly available at https://github.com/Zengyi-Qin/Weakly-Supervised-3D-Object-Detection.



rate research

Read More

It is laborious to manually label point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised approach for 3D object detection, only requiring a small set of weakly annotated scenes, associated with a few precisely labeled object instances. This is achieved by a two-stage architecture design. Stage-1 learns to generate cylindrical object proposals under weak supervision, i.e., only the horizontal centers of objects are click-annotated on birds view scenes. Stage-2 learns to refine the cylindrical proposals to get cuboids and confidence scores, using a few well-labeled object instances. Using only 500 weakly annotated scenes and 534 precisely labeled vehicle instances, our method achieves 85-95% the performance of current top-leading, fully supervised detectors (which require 3, 712 exhaustively and precisely annotated scenes with 15, 654 instances). More importantly, with our elaborately designed network architecture, our trained model can be applied as a 3D object annotator, allowing both automatic and active working modes. The annotations generated by our model can be used to train 3D object detectors with over 94% of their original performance (under manually labeled data). Our experiments also show our models potential in boosting performance given more training data. Above designs make our approach highly practical and introduce new opportunities for learning 3D object detection with reduced annotation burden.
104 - Rui Qian , Xin Lai , Xirong Li 2021
Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize region proposal network to propose a fraction of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as an uncorrelated entry when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose BANet for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Network to fully exploit voxel-wise, pixel-wise, and point-wise feature with expanding receptive fields for more informative RoI-wise representations. As of Apr. 17th, 2021, our BANet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code will be released once the paper is accepted.
Semantic segmentation on 3D point clouds is an important task for 3D scene understanding. While dense labeling on 3D data is expensive and time-consuming, only a few works address weakly supervised semantic point cloud segmentation methods to relieve the labeling cost by learning from simpler and cheaper labels. Meanwhile, there are still huge performance gaps between existing weakly supervised methods and state-of-the-art fully supervised methods. In this paper, we train a semantic point cloud segmentation network with only a small portion of points being labeled. We argue that we can better utilize the limited supervision information as we densely propagate the supervision signal from the labeled points to other points within and across the input samples. Specifically, we propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples with common classes and an intra-sample feature redistribution module to propagate supervision signals on unlabeled points across and within point cloud samples. We conduct extensive experiments on public datasets S3DIS and ScanNet. Our weakly supervised method with only 10% and 1% of labels can produce compatible results with the fully supervised counterpart.
Convolutional Neural Networks (CNNs) have emerged as a powerful strategy for most object detection tasks on 2D images. However, their power has not been fully realised for detecting 3D objects in point clouds directly without converting them to regular grids. Existing state-of-art 3D object detection methods aim to recognize 3D objects individually without exploiting their relationships during learning or inference. In this paper, we first propose a strategy that associates the predictions of direction vectors and pseudo geometric centers together leading to a win-win solution for 3D bounding box candidates regression. Secondly, we propose point attention pooling to extract uniform appearance features for each 3D object proposal, benefiting from the learned direction features, semantic features and spatial coordinates of the object points. Finally, the appearance features are used together with the position features to build 3D object-object relationship graphs for all proposals to model their co-existence. We explore the effect of relation graphs on proposals appearance features enhancement under supervised and unsupervised settings. The proposed relation graph network consists of a 3D object proposal generation module and a 3D relation module, makes it an end-to-end trainable network for detecting 3D object in point clouds. Experiments on challenging benchmarks ( SunRGB-Dand ScanNet datasets ) of 3D point clouds show that our algorithm can perform better than the existing state-of-the-art methods.
179 - Wangbo Zhao , Jing Zhang , Long Li 2021
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we present the first weakly supervised video salient object detection model based on relabeled fixation guided scribble annotations. Specifically, an Appearance-motion fusion module and bidirectional ConvLSTM based framework are proposed to achieve effective multi-modal learning and long-term temporal context modeling based on our new weak annotations. Further, we design a novel foreground-background similarity loss to further explore the labeling similarity across frames. A weak annotation boosting strategy is also introduced to boost our model performance with a new pseudo-label generation technique. Extensive experimental results on six benchmark video saliency detection datasets illustrate the effectiveness of our solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا