Do you want to publish a course? Click here

Investigating the multiband nonthermal emission of the 100 TeV source eHWC J2019$+$368 with a pulsar wind nebula scenario

57   0   0.0 ( 0 )
 Added by Jun Fang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

eHWC J2019+368 is one of the sources emitting $gamma$-rays with energies higher than 100 TeV based on the recent measurement with the High Altitude Water Cherenkov Observatory (HAWC), and the origin is still in debate. The pulsar PSR J2021$+$3651 is spatially coincident with the TeV source. We investigate theoretically whether the multiband nonthermal emission of eHWC J2019+368 can originate from the pulsar wind nebula (PWN) G75.2$+$0.1 powered by PSR J2021$+$3651. In the model, the spin-down power of the pulsar is transferred to high-energy particles and magnetic field in the nebula. As the particles with an energy distribution of either a broken power-law or a power-law continually injected into the nebula, the multiband nonthermal emission is produced via synchrotron radiation and inverse Compton scattering. The spectral energy distribution of the nebula from the model with the reasonable parameters is generally consistent with the detected radio, X-ray and TeV $gamma$-ray fluxes. Our study supports that the PWN has the ability to produce the TeV $gamma$-rays of eHWC J2019+368, and the most energetic particles in the nebula have energies up to about $0.4$ PeV.



rate research

Read More

This article reports the results of X-ray studies of the extended TeV $gamma$-ray source VER J2019+368. Suzaku observations conducted to examine properties of the X-ray pulsar wind nebula (PWN) around PSR J2021+3651 revealed that the western region of the X-ray PWN has a source extent of $15 times 10$ with the major axis oriented to that of the TeV emission. The PWN-west spectrum was closely fitted by a power-law for absorption at $N({rm H}) = (8.2^{+1.3}_{-1.1}) times 10^{21}~{rm cm^{-2}}$ and a photon index of $Gamma = 2.05pm0.12$, with no obvious change in the index within the X-ray PWN. The measured X-ray absorption indicates that the distance to the source is much less than $10~{rm kpc}$ inferred by radio data. Aside from the PWN, no extended emission was observed around PSR J2021+3651 even by Suzaku. Archival data from the XMM-Newton were also analyzed to complement the Suzaku observations, indicating that the eastern region of the X-ray PWN has a similar spectrum ($N(rm H)=(7.5 pm 0.9) times 10^{21}~{rm cm^{-2}}$ and $Gamma=2.03 pm 0.10$) and source extent up to at least $12$ along the major axis. The lack of significant change in the photon index and the source extent in X-ray are used to constrain the advection velocity or the diffusion coefficient for accelerated X-ray-producing electrons. A mean magnetic field of ${sim}3~mu{rm G}$ is required to account for the measured X-ray spectrum and reported TeV $gamma$-ray spectrum. A model calculation of synchrotron radiation and inverse Compton scattering was able to explain ${sim}80%$ of the reported TeV flux, indicating that the X-ray PWN is a major contributor of VER J2019+368.
The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the 2 year HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a $sim$7 kyr pulsar and nebula system producing the observed emission at X-ray and ${gamma}$-ray energies.
The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to their morphological similarities. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), although not detected, with an upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function dphi/dE=f_0(E/1TeV)^{-Gamma} with f_0=(2.0pm0.4_{stat}pm0.6_{sys})times10^{-13}cm^{-2}s^{-1}TeV^{-1} and Gamma=2.4pm0.2_{stat}pm0.2_{sys}. The skymap is compatible with an unresolved source. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
The pulsar wind nebula (PWN) 3C 58 has been proposed as a good candidate for detection at VHE (VHE; E>100 GeV) for many years. It is powered by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to its morphology. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), and upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density according to GALPROP, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires an unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energies, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا