No Arabic abstract
This article reports the results of X-ray studies of the extended TeV $gamma$-ray source VER J2019+368. Suzaku observations conducted to examine properties of the X-ray pulsar wind nebula (PWN) around PSR J2021+3651 revealed that the western region of the X-ray PWN has a source extent of $15 times 10$ with the major axis oriented to that of the TeV emission. The PWN-west spectrum was closely fitted by a power-law for absorption at $N({rm H}) = (8.2^{+1.3}_{-1.1}) times 10^{21}~{rm cm^{-2}}$ and a photon index of $Gamma = 2.05pm0.12$, with no obvious change in the index within the X-ray PWN. The measured X-ray absorption indicates that the distance to the source is much less than $10~{rm kpc}$ inferred by radio data. Aside from the PWN, no extended emission was observed around PSR J2021+3651 even by Suzaku. Archival data from the XMM-Newton were also analyzed to complement the Suzaku observations, indicating that the eastern region of the X-ray PWN has a similar spectrum ($N(rm H)=(7.5 pm 0.9) times 10^{21}~{rm cm^{-2}}$ and $Gamma=2.03 pm 0.10$) and source extent up to at least $12$ along the major axis. The lack of significant change in the photon index and the source extent in X-ray are used to constrain the advection velocity or the diffusion coefficient for accelerated X-ray-producing electrons. A mean magnetic field of ${sim}3~mu{rm G}$ is required to account for the measured X-ray spectrum and reported TeV $gamma$-ray spectrum. A model calculation of synchrotron radiation and inverse Compton scattering was able to explain ${sim}80%$ of the reported TeV flux, indicating that the X-ray PWN is a major contributor of VER J2019+368.
We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov telescope array. These observations were motivated by the discovery of a cluster of >30GeV photons in the first year of Fermi-LAT observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of 1.93 +/- 0.13_stat +/- 0.78_sys 10^-11 cm-2 s-1 above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to ~0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly-discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z=0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.
This work is a summary of the X-ray spectral studies of 29 TeV $gamma$-ray emitting blazars observed with Swift/XRT, especially focusing on sources for which X-ray regime allows to study the low and the high energy ends of the particle distributions function. Variability studies require simultaneous coverage, ideally sampling different flux states of each source. This is achieved using X-ray observations by disentangling the high-energy end of the synchrotron emission and the low-energy end of the Compton emission, which are produced by the same electron population. We focused on a sample of 29 TeV gamma-ray emitting blazars with the best signal-to-noise X-ray observations collected with Swift/XRT in the energy range of 0.3-10 keV during 10 years of Swift/XRT operations. We investigate the X-ray spectral shapes and the effects of different corrections for neutral hydrogen absorption and decompose the synchrotron and inverse Compton components. In the case of 5 sources (3C 66A, S5 0716+714, W Comae, 4C +21.35 and BL Lacertae) a superposition of both components is observed in the X-ray band, permitting simultaneous, time resolved studies of both ends of the electron distribution. The analysis of multi-epoch observations revealed that the break energy of X-ray spectrum varies only by a small factor with flux changes. Flux variability is more pronounced in the synchrotron domain (high-energy end of the electron distribution) than in the Compton domain (low energy end of the electron distribution). The spectral shape of the Compton domain is stable, while the flux of the synchrotron domain is variable. These changes cannot be described by simple variations of the cut-off energy, suggesting that the high-energy end of the electron distribution is not generally well-described by cooling only.
The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the 2 year HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a $sim$7 kyr pulsar and nebula system producing the observed emission at X-ray and ${gamma}$-ray energies.
eHWC J2019+368 is one of the sources emitting $gamma$-rays with energies higher than 100 TeV based on the recent measurement with the High Altitude Water Cherenkov Observatory (HAWC), and the origin is still in debate. The pulsar PSR J2021$+$3651 is spatially coincident with the TeV source. We investigate theoretically whether the multiband nonthermal emission of eHWC J2019+368 can originate from the pulsar wind nebula (PWN) G75.2$+$0.1 powered by PSR J2021$+$3651. In the model, the spin-down power of the pulsar is transferred to high-energy particles and magnetic field in the nebula. As the particles with an energy distribution of either a broken power-law or a power-law continually injected into the nebula, the multiband nonthermal emission is produced via synchrotron radiation and inverse Compton scattering. The spectral energy distribution of the nebula from the model with the reasonable parameters is generally consistent with the detected radio, X-ray and TeV $gamma$-ray fluxes. Our study supports that the PWN has the ability to produce the TeV $gamma$-rays of eHWC J2019+368, and the most energetic particles in the nebula have energies up to about $0.4$ PeV.
HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The non-detection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the ob ject as a gamma-ray emitting binary.