No Arabic abstract
Continuous sign language recognition (SLR) is a challenging task that requires learning on both spatial and temporal dimensions of signing frame sequences. Most recent work accomplishes this by using CNN and RNN hybrid networks. However, training these networks is generally non-trivial, and most of them fail in learning unseen sequence patterns, causing an unsatisfactory performance for online recognition. In this paper, we propose a fully convolutional network (FCN) for online SLR to concurrently learn spatial and temporal features from weakly annotated video sequences with only sentence-level annotations given. A gloss feature enhancement (GFE) module is introduced in the proposed network to enforce better sequence alignment learning. The proposed network is end-to-end trainable without any pre-training. We conduct experiments on two large scale SLR datasets. Experiments show that our method for continuous SLR is effective and performs well in online recognition.
Vision-based Continuous Sign Language Recognition (CSLR) aims to recognize unsegmented signs from image streams. Overfitting is one of the most critical problems in CSLR training, and previous works show that the iterative training scheme can partially solve this problem while also costing more training time. In this study, we revisit the iterative training scheme in recent CSLR works and realize that sufficient training of the feature extractor is critical to solving the overfitting problem. Therefore, we propose a Visual Alignment Constraint (VAC) to enhance the feature extractor with alignment supervision. Specifically, the proposed VAC comprises two auxiliary losses: one focuses on visual features only, and the other enforces prediction alignment between the feature extractor and the alignment module. Moreover, we propose two metrics to reflect overfitting by measuring the prediction inconsistency between the feature extractor and the alignment module. Experimental results on two challenging CSLR datasets show that the proposed VAC makes CSLR networks end-to-end trainable and achieves competitive performance.
Handwritten text recognition is challenging because of the virtually infinite ways a human can write the same message. Our fully convolutional handwriting model takes in a handwriting sample of unknown length and outputs an arbitrary stream of symbols. Our dual stream architecture uses both local and global context and mitigates the need for heavy preprocessing steps such as symbol alignment correction as well as complex post processing steps such as connectionist temporal classification, dictionary matching or language models. Using over 100 unique symbols, our model is agnostic to Latin-based languages, and is shown to be quite competitive with state of the art dictionary based methods on the popular IAM and RIMES datasets. When a dictionary is known, we further allow a probabilistic character error rate to correct errant word blocks. Finally, we introduce an attention based mechanism which can automatically target variants of handwriting, such as slant, stroke width, or noise.
Continuous sign language recognition (SLR) aims to translate a signing sequence into a sentence. It is very challenging as sign language is rich in vocabulary, while many among them contain similar gestures and motions. Moreover, it is weakly supervised as the alignment of signing glosses is not available. In this paper, we propose Structured Feature Network (SF-Net) to address these challenges by effectively learn multiple levels of semantic information in the data. The proposed SF-Net extracts features in a structured manner and gradually encodes information at the frame level, the gloss level and the sentence level into the feature representation. The proposed SF-Net can be trained end-to-end without the help of other models or pre-training. We tested the proposed SF-Net on two large scale public SLR datasets collected from different continuous SLR scenarios. Results show that the proposed SF-Net clearly outperforms previous sequence level supervision based methods in terms of both accuracy and adaptability.
Continuous sign language recognition (cSLR) is a public significant task that transcribes a sign language video into an ordered gloss sequence. It is important to capture the fine-grained gloss-level details, since there is no explicit alignment between sign video frames and the corresponding glosses. Among the past works, one promising way is to adopt a one-dimensional convolutional network (1D-CNN) to temporally fuse the sequential frames. However, CNNs are agnostic to similarity or dissimilarity, and thus are unable to capture local consistent semantics within temporally neighboring frames. To address the issue, we propose to adaptively fuse local features via temporal similarity for this task. Specifically, we devise a Multi-scale Local-Temporal Similarity Fusion Network (mLTSF-Net) as follows: 1) In terms of a specific video frame, we firstly select its similar neighbours with multi-scale receptive regions to accommodate different lengths of glosses. 2) To ensure temporal consistency, we then use position-aware convolution to temporally convolve each scale of selected frames. 3) To obtain a local-temporally enhanced frame-wise representation, we finally fuse the results of different scales using a content-dependent aggregator. We train our model in an end-to-end fashion, and the experimental results on RWTH-PHOENIX-Weather 2014 datasets (RWTH) demonstrate that our model achieves competitive performance compared with several state-of-the-art models.
In this paper, we present a conceptually simple, strong, and efficient framework for panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a unified fully convolutional pipeline. In particular, Panoptic FCN encodes each object instance or stuff category into a specific kernel weight with the proposed kernel generator and produces the prediction by convolving the high-resolution feature directly. With this approach, instance-aware and semantically consistent properties for things and stuff can be respectively satisfied in a simple generate-kernel-then-segment workflow. Without extra boxes for localization or instance separation, the proposed approach outperforms previous box-based and -free models with high efficiency on COCO, Cityscapes, and Mapillary Vistas datasets with single scale input. Our code is made publicly available at https://github.com/Jia-Research-Lab/PanopticFCN.