Do you want to publish a course? Click here

Visual Alignment Constraint for Continuous Sign Language Recognition

112   0   0.0 ( 0 )
 Added by Yuecong Min
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Vision-based Continuous Sign Language Recognition (CSLR) aims to recognize unsegmented signs from image streams. Overfitting is one of the most critical problems in CSLR training, and previous works show that the iterative training scheme can partially solve this problem while also costing more training time. In this study, we revisit the iterative training scheme in recent CSLR works and realize that sufficient training of the feature extractor is critical to solving the overfitting problem. Therefore, we propose a Visual Alignment Constraint (VAC) to enhance the feature extractor with alignment supervision. Specifically, the proposed VAC comprises two auxiliary losses: one focuses on visual features only, and the other enforces prediction alignment between the feature extractor and the alignment module. Moreover, we propose two metrics to reflect overfitting by measuring the prediction inconsistency between the feature extractor and the alignment module. Experimental results on two challenging CSLR datasets show that the proposed VAC makes CSLR networks end-to-end trainable and achieves competitive performance.



rate research

Read More

Continuous sign language recognition (SLR) is a challenging task that requires learning on both spatial and temporal dimensions of signing frame sequences. Most recent work accomplishes this by using CNN and RNN hybrid networks. However, training these networks is generally non-trivial, and most of them fail in learning unseen sequence patterns, causing an unsatisfactory performance for online recognition. In this paper, we propose a fully convolutional network (FCN) for online SLR to concurrently learn spatial and temporal features from weakly annotated video sequences with only sentence-level annotations given. A gloss feature enhancement (GFE) module is introduced in the proposed network to enforce better sequence alignment learning. The proposed network is end-to-end trainable without any pre-training. We conduct experiments on two large scale SLR datasets. Experiments show that our method for continuous SLR is effective and performs well in online recognition.
95 - Dongxu Li , Xin Yu , Chenchen Xu 2020
Word-level sign language recognition (WSLR) is a fundamental task in sign language interpretation. It requires models to recognize isolated sign words from videos. However, annotating WSLR data needs expert knowledge, thus limiting WSLR dataset acquisition. On the contrary, there are abundant subtitled sign news videos on the internet. Since these videos have no word-level annotation and exhibit a large domain gap from isolated signs, they cannot be directly used for training WSLR models. We observe that despite the existence of a large domain gap, isolated and news signs share the same visual concepts, such as hand gestures and body movements. Motivated by this observation, we propose a novel method that learns domain-invariant visual concepts and fertilizes WSLR models by transferring knowledge of subtitled news sign to them. To this end, we extract news signs using a base WSLR model, and then design a classifier jointly trained on news and isolated signs to coarsely align these two domain features. In order to learn domain-invariant features within each class and suppress domain-specific features, our method further resorts to an external memory to store the class centroids of the aligned news signs. We then design a temporal attention based on the learnt descriptor to improve recognition performance. Experimental results on standard WSLR datasets show that our method outperforms previous state-of-the-art methods significantly. We also demonstrate the effectiveness of our method on automatically localizing signs from sign news, achieving 28.1 for [email protected].
This paper presents a system which can recognise hand poses & gestures from the Indian Sign Language (ISL) in real-time using grid-based features. This system attempts to bridge the communication gap between the hearing and speech impaired and the rest of the society. The existing solutions either provide relatively low accuracy or do not work in real-time. This system provides good results on both the parameters. It can identify 33 hand poses and some gestures from the ISL. Sign Language is captured from a smartphone camera and its frames are transmitted to a remote server for processing. The use of any external hardware (such as gloves or the Microsoft Kinect sensor) is avoided, making it user-friendly. Techniques such as Face detection, Object stabilisation and Skin Colour Segmentation are used for hand detection and tracking. The image is further subjected to a Grid-based Feature Extraction technique which represents the hands pose in the form of a Feature Vector. Hand poses are then classified using the k-Nearest Neighbours algorithm. On the other hand, for gesture classification, the motion and intermediate hand poses observation sequences are fed to Hidden Markov Model chains corresponding to the 12 pre-selected gestures defined in ISL. Using this methodology, the system is able to achieve an accuracy of 99.7% for static hand poses, and an accuracy of 97.23% for gesture recognition.
Continuous sign language recognition (SLR) aims to translate a signing sequence into a sentence. It is very challenging as sign language is rich in vocabulary, while many among them contain similar gestures and motions. Moreover, it is weakly supervised as the alignment of signing glosses is not available. In this paper, we propose Structured Feature Network (SF-Net) to address these challenges by effectively learn multiple levels of semantic information in the data. The proposed SF-Net extracts features in a structured manner and gradually encodes information at the frame level, the gloss level and the sentence level into the feature representation. The proposed SF-Net can be trained end-to-end without the help of other models or pre-training. We tested the proposed SF-Net on two large scale public SLR datasets collected from different continuous SLR scenarios. Results show that the proposed SF-Net clearly outperforms previous sequence level supervision based methods in terms of both accuracy and adaptability.
135 - Pan Xie , Zhi Cui , Yao Du 2021
Continuous sign language recognition (cSLR) is a public significant task that transcribes a sign language video into an ordered gloss sequence. It is important to capture the fine-grained gloss-level details, since there is no explicit alignment between sign video frames and the corresponding glosses. Among the past works, one promising way is to adopt a one-dimensional convolutional network (1D-CNN) to temporally fuse the sequential frames. However, CNNs are agnostic to similarity or dissimilarity, and thus are unable to capture local consistent semantics within temporally neighboring frames. To address the issue, we propose to adaptively fuse local features via temporal similarity for this task. Specifically, we devise a Multi-scale Local-Temporal Similarity Fusion Network (mLTSF-Net) as follows: 1) In terms of a specific video frame, we firstly select its similar neighbours with multi-scale receptive regions to accommodate different lengths of glosses. 2) To ensure temporal consistency, we then use position-aware convolution to temporally convolve each scale of selected frames. 3) To obtain a local-temporally enhanced frame-wise representation, we finally fuse the results of different scales using a content-dependent aggregator. We train our model in an end-to-end fashion, and the experimental results on RWTH-PHOENIX-Weather 2014 datasets (RWTH) demonstrate that our model achieves competitive performance compared with several state-of-the-art models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا