No Arabic abstract
We study the dynamics of coupled oscillator networks with higher-order interactions and their ability to store information. In particular, the fixed points of these oscillator systems consist of two clusters of oscillators that become entrained at opposite phases, mapping easily to information more commonly represented by sequences of 0s and 1s. While $2^N$ such fixed point states exist in a system of $N$ oscillators, we find that a relatively small fraction of these are stable, as chosen by the network topology. To understand the memory selection of such oscillator networks, we derive a stability criterion to identify precisely which states are stable, i.e., which pieces of information are supported by the network. We also investigate the process by which the system can switch between different stable states when a random perturbation is applied that may force the system into the basin of attraction of another stable state.
Synchronization processes play critical roles in the functionality of a wide range of both natural and man-made systems. Recent work in physics and neuroscience highlights the importance of higher-order interactions between dynamical units, i.e., three- and four-way interactions in addition to pairwise interactions, and their role in shaping collective behavior. Here we show that higher-order interactions between coupled phase oscillators, encoded microscopically in a simplicial complex, give rise to added nonlinearity in the macroscopic system dynamics that induces abrupt synchronization transitions via hysteresis and bistability of synchronized and incoherent states. Moreover, these higher-order interactions can stabilize strongly synchronized states even when the pairwise coupling is repulsive. These findings reveal a self-organized phenomenon that may be responsible for the rapid switching to synchronization in many biological and other systems that exhibit synchronization without the need of particular correlation mechanisms between the oscillators and the topological structure.
Collective behavior plays a key role in the function of a wide range of physical, biological, and neurological systems where empirical evidence has recently uncovered the prevalence of higher-order interactions, i.e., structures that represent interactions between more than just two individual units, in complex network structures. Here, we study the optimization of collective behavior in networks with higher-order interactions encoded in clique complexes. Our approach involves adapting the Synchrony Alignment Function framework to a new composite Laplacian matrix that encodes multi-order interactions including, e.g., both dyadic and triadic couplings. We show that as higher-order coupling interactions are equitably strengthened, so that overall coupling is conserved, the optimal collective behavior improves. We find that this phenomenon stems from the broadening of a composite Laplacians eigenvalue spectrum, which improves the optimal collective behavior and widens the range of possible behaviors. Moreover, we find in constrained optimization scenarios that a nontrivial, ideal balance between the relative strengths of pair-wise and higher-order interactions leads to the strongest collective behavior supported by a network. This work provides insight into how systems balance interactions of different types to optimize or broaden their dynamical range of behavior, especially for self-regulating systems like the brain.
Globally coupled ensembles of phase oscillators serve as useful tools for modeling synchronization and collective behavior in a variety of applications. As interest in the effects of simplicial interactions (i.e., non-additive, higher-order interactions between three or more units) continues to grow we study an extension of the Kuramoto model where oscillators are coupled via three-way interactions that exhibits novel dynamical properties including clustering, multistability, and abrupt desynchronization transitions. Here we provide a rigorous description of the stability of various multicluster states by studying their spectral properties in the thermodynamic limit. Not unlike the classical Kuramoto model, a natural frequency distribution with infinite support yields a population of drifting oscillators, which in turn guarantees that a portion of the spectrum is located on the imaginary axes, resulting in neutrally stable or unstable solutions. On the other hand, a natural frequency distribution with finite support allows for a fully phase-locked state, whose spectrum is real and may be linearly stable or unstable.
Identifying the most influential nodes in networked systems is vital to optimize their function and control. Several scalar metrics have been proposed to that effect, but the recent shift in focus towards higher-order networks has rendered them void of performance guarantees. We propose a new measure of nodes centrality, which is no longer a scalar value, but a vector with dimension one lower than the highest order of interaction in the graph. Such a vectorial measure is linked to the eigenvector centrality for networks containing only pairwise interactions, whereas it has a significant added value in all other situations where interactions occur at higher-orders. In particular, it is able to unveil different roles which may be played by a same node at different orders of interactions, an information which is impossible to be retrieved by single scalar measures.
The stable operation of the electric power grid relies on a precisely synchronized state of all generators and machines. All machines rotate at exactly the same frequency with fixed phase differences, leading to steady power flows throughout the grid. Whether such a steady state exists for a given network is of eminent practical importance. The loss of a steady state typically leads to power outages up to a complete blackout. But also the existence of multiple steady states is undesirable, as it can lead to sudden transitions, circulating flows and eventually also to power outages. Steady states are typically calculated numerically, but this approach gives only limited insight into the existence and (non-)uniqueness of steady states. Analytic results are available only for special network configuration, in particular for grids with negligible Ohmic losses or radial networks without any loops. In this article, we introduce a method to systematically construct the solutions of the real power load-flow equations in the presence of Ohmic losses. We calculate the steady states explicitly for elementary networks demonstrating different mechanisms leading to multistability. Our results also apply to models of coupled oscillators which are widely used in theoretical physics and mathematical biology.