Do you want to publish a course? Click here

Higher-order interactions in complex networks of phase oscillators promote abrupt synchronization switching

101   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Synchronization processes play critical roles in the functionality of a wide range of both natural and man-made systems. Recent work in physics and neuroscience highlights the importance of higher-order interactions between dynamical units, i.e., three- and four-way interactions in addition to pairwise interactions, and their role in shaping collective behavior. Here we show that higher-order interactions between coupled phase oscillators, encoded microscopically in a simplicial complex, give rise to added nonlinearity in the macroscopic system dynamics that induces abrupt synchronization transitions via hysteresis and bistability of synchronized and incoherent states. Moreover, these higher-order interactions can stabilize strongly synchronized states even when the pairwise coupling is repulsive. These findings reveal a self-organized phenomenon that may be responsible for the rapid switching to synchronization in many biological and other systems that exhibit synchronization without the need of particular correlation mechanisms between the oscillators and the topological structure.



rate research

Read More

We study the dynamics of coupled oscillator networks with higher-order interactions and their ability to store information. In particular, the fixed points of these oscillator systems consist of two clusters of oscillators that become entrained at opposite phases, mapping easily to information more commonly represented by sequences of 0s and 1s. While $2^N$ such fixed point states exist in a system of $N$ oscillators, we find that a relatively small fraction of these are stable, as chosen by the network topology. To understand the memory selection of such oscillator networks, we derive a stability criterion to identify precisely which states are stable, i.e., which pieces of information are supported by the network. We also investigate the process by which the system can switch between different stable states when a random perturbation is applied that may force the system into the basin of attraction of another stable state.
189 - Anil Kumar , Sarika Jalan 2021
We show that an introduction of a phase parameter ($alpha$), with $0 le alpha le pi/2$, in the interlayer coupling terms of multiplex networks of Kuramoto oscillators can induce explosive synchronization (ES) in the multiplexed layers. Along with the {alpha} values, the hysteresis width is determined by the interlayer coupling strength and the frequency mismatch between the mirror (inter-connected) nodes. A mean-field analysis is performed to support the numerical results. Similar to the earlier works, we find that the suppression of synchronization is accountable for the origin of ES. The robustness of ES against changes in the network topology and frequency distribution is tested. Finally, taking a suggestion from the synchronized state of the multiplex networks, we extend the results to the classical concept of the single-layer networks in which some specific links are assigned a phase-shifted coupling. Different methods have been introduced in the past years to incite ES in coupled oscillators; our results indicate that a phase-shifted coupling can also be one such method to achieve ES.
We consider the inertial Kuramoto model of $N$ globally coupled oscillators characterized by both their phase and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the academic interest, we show that the model can be related to a network of phase-locked loops widely used in electronic circuits for generating a stable frequency at multiples of an input frequency. We study the model for a generic choice of the natural frequency distribution of the oscillators, to elucidate how a synchronized phase bifurcates from an incoherent phase as the coupling constant between the oscillators is tuned. We show that in contrast to the case with no delay, here the system in the stationary state may exhibit either a subcritical or a supercritical bifurcation between a synchronized and an incoherent phase, which is dictated by the value of the delay present in the interaction and the precise value of inertia of the oscillators. Our theoretical analysis, performed in the limit $N to infty$, is based on an unstable manifold expansion in the vicinity of the bifurcation, which we apply to the kinetic equation satisfied by the single-oscillator distribution function. We check our results by performing direct numerical integration of the dynamics for large $N$, and highlight the subtleties arising from having a finite number of oscillators.
In-phase synchronization is a special case of synchronous behavior when coupled oscillators have the same phases for any time moments. Such behavior appears naturally for nearly identical coupled limit-cycle oscillators when the coupling strength is greatly above the synchronization threshold. We investigate the general class of nearly identical complex oscillators connected into network in a context of a phase reduction approach. By treating each oscillator as a black-box possessing a single-input single-output, we provide a practical and simply realizable control algorithm to attain the in-phase synchrony of the network. For a general diffusive-type coupling law and any value of a coupling strength (even greatly below the synchronization threshold) the delayed feedback control with a specially adjusted time-delays can provide in-phase synchronization. Such adjustment of the delay times performed in an automatic fashion by the use of an adaptive version of the delayed feedback algorithm when time-delays become time-dependent slowly varying control parameters. Analytical results show that there are many arrangements of the time-delays for the in-phase synchronization, therefore we supplement the algorithm by an additional requirement to choose appropriate set of the time-delays, which minimize power of a control force. Performed numerical validations of the predictions highlights the usefulness of our approach.
We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا