Do you want to publish a course? Click here

Strengthened Landauer bound for composite systems

45   0   0.0 ( 0 )
 Added by David Wolpert
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many systems can be decomposed into a set of subsystems, where the dynamics of each subsystem only depends on some of the other subsystems rather than on all of them. Here I derive an infinite set of lower bounds on the entropy production of any such composite system, in terms of the initial distribution of its states, the ending distribution, and the dependencies of the dynamics of its subsystems. In contrast to previous results, these new bounds hold for arbitrary dependencies among the subsystems, not only for the case where the subsystems evolve independently. Moreover, finding the strongest of these new lower bounds is a linear programming problem. As I illustrate, often this maximal lower bound is stronger than the conventional Landauer bound, since the conventional Landauer bound does not account for the dependency structure.



rate research

Read More

Information processing typically occurs via the composition of modular units, such as universal logic gates. The benefit of modular information processing, in contrast to globally integrated information processing, is that complex global computations are more easily and flexibly implemented via a series of simpler, localized information processing operations which only control and change local degrees of freedom. We show that, despite these benefits, there are unavoidable thermodynamic costs to modularity---costs that arise directly from the operation of localized processing and that go beyond Landauers dissipation bound for erasing information. Integrated computations can achieve Landauers bound, however, when they globally coordinate the control of all of an information reservoirs degrees of freedom. Unfortunately, global correlations among the information-bearing degrees of freedom are easily lost by modular implementations. This is costly since such correlations are a thermodynamic fuel. We quantify the minimum irretrievable dissipation of modular computations in terms of the difference between the change in global nonequilibrium free energy, which captures these global correlations, and the local (marginal) change in nonequilibrium free energy, which bounds modular work production. This modularity dissipation is proportional to the amount of additional work required to perform the computational task modularly. It has immediate consequences for physically embedded transducers, known as information ratchets. We show how to circumvent modularity dissipation by designing internal ratchet states that capture the global correlations and patterns in the ratchets information reservoir. Designed in this way, information ratchets match the optimum thermodynamic efficiency of globally integrated computations.
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum field theory methods and analysed in the zero frequency limit. It turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system with non-vanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value of the entropy production) of the above distribution are non-negative. This result extends the second principle of thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Buttiker state. The impact of the time reversal is also discussed.
Information dynamics is an emerging description of information processing in complex systems which describes systems in terms of intrinsic computation, identifying computational primitives of information storage and transfer. In this paper we make a formal analogy between information dynamics and stochastic thermodynamics which describes the thermal behaviour of small irreversible systems. As stochastic dynamics is increasingly being utilized to quantify the thermodynamics associated with the processing of information we suggest such an analogy is instructive, highlighting that existing thermodynamic quantities can be described solely in terms of extant information theoretic measures related to information processing. In this contribution we construct irreversibility measures in terms of these quantities and relate them to the physical entropy productions that characterise the behaviour of single and composite systems in stochastic thermodynamics illustrating them with simple examples. Moreover, we can apply such a formalism to systems which do not have a bipartite structure. In particular we demonstrate that, given suitable non-bipartite processes, the heat flow in a subsystem can still be identified and one requires the present formalism to recover generalizations of the second law. In these systems residual irreversibility is associated with neither subsystem and this must be included in the these generalised second laws. This opens up the possibility of describing all physical systems in terms of computation allowing us to propose a framework for discussing the reversibility of systems traditionally out of scope of stochastic thermodynamics.
122 - Fred Cooper , Gourab Ghoshal , 2013
We give a first principles derivation of the stochastic partial differential equations that describe the chemical reactions of the Gray-Scott model (GS): $U+2V {stackrel {lambda}{rightarrow}} 3 V;$ and $V {stackrel {mu}{rightarrow}} P$, $U {stackrel { u}{rightarrow}} Q$, with a constant feed rate for $U$. We find that the conservation of probability ensured by the chemical master equation leads to a modification of the usual differential equations for the GS model which now involves two composite fields and also intrinsic noise terms. One of the composites is $psi_1 = phi_v^2$, where $ < phi_v >_{eta} = v$ is the concentration of the species $V$ and the averaging is over the internal noise $eta_{u,v,psi_1}$. The second composite field is the product of three fields $ chi = lambda phi_u phi_v^2$ and requires a noise source to ensure probability conservation. A third composite $psi_2 = phi_{u} phi_{v}$ can be also be identified from the noise-induced reactions. The Hamiltonian that governs the time evolution of the many-body wave function, associated with the master equation, has a broken U(1) symmetry related to particle number conservation. By expanding around the (broken symmetry) zero energy solution of the Hamiltonian (by performing a Doi shift) one obtains from our path integral formulation the usual reaction diffusion equation, at the classical level. The Langevin equations that are derived from the chemical master equation have multiplicative noise sources for the density fields $phi_u, phi_v, chi$ that induce higher order processes such as $n rightarrow n$ scattering for $n > 3$. The amplitude of the noise acting on $ phi_v$ is itself stochastic in nature.
Recently we developed a formalism for the scattering from linear and acyclic branched structures build of mutually non-interacting sub-units.{[}C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136, 104105 (2012){]} We assumed each sub-unit has reference points associated with it. These are well defined positions where sub-units can be linked together. In the present paper, we generalize the formalism to the case where each reference point can represent a distribution of potential link positions. We also present a generalized diagrammatic representation of the formalism. Scattering expressions required to model rods, polymers, loops, flat circular disks, rigid spheres and cylinders are derived. and we use them to illustrate the formalism by deriving the generic scattering expression for micelles and bottle brush structures and show how the scattering is affected by different choices of potential link positions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا