Do you want to publish a course? Click here

Entropy balance and Information processing in bipartite and non-bipartite composite systems

114   0   0.0 ( 0 )
 Added by Richard Spinney
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Information dynamics is an emerging description of information processing in complex systems which describes systems in terms of intrinsic computation, identifying computational primitives of information storage and transfer. In this paper we make a formal analogy between information dynamics and stochastic thermodynamics which describes the thermal behaviour of small irreversible systems. As stochastic dynamics is increasingly being utilized to quantify the thermodynamics associated with the processing of information we suggest such an analogy is instructive, highlighting that existing thermodynamic quantities can be described solely in terms of extant information theoretic measures related to information processing. In this contribution we construct irreversibility measures in terms of these quantities and relate them to the physical entropy productions that characterise the behaviour of single and composite systems in stochastic thermodynamics illustrating them with simple examples. Moreover, we can apply such a formalism to systems which do not have a bipartite structure. In particular we demonstrate that, given suitable non-bipartite processes, the heat flow in a subsystem can still be identified and one requires the present formalism to recover generalizations of the second law. In these systems residual irreversibility is associated with neither subsystem and this must be included in the these generalised second laws. This opens up the possibility of describing all physical systems in terms of computation allowing us to propose a framework for discussing the reversibility of systems traditionally out of scope of stochastic thermodynamics.



rate research

Read More

We introduce and analyze the notion of mutual entropy-production (MEP) in autonomous systems. Evaluating MEP rates is in general a difficult task due to non-Markovian effects. For bipartite systems, we provide closed expressions in various limiting regimes which we verify using numerical simulations. Based on the study of a biochemical and an electronic sensing model, we suggest that the MEP rates provide a relevant measure of the accuracy of sensing.
During a spontaneous change, a macroscopic physical system will evolve towards a macro-state with more realizations. This observation is at the basis of the Statistical Mechanical version of the Second Law of Thermodynamics, and it provides an interpretation of entropy in terms of probabilities. However, we cannot rely on the statistical-mechanical expressions for entropy in systems that are far from equilibrium. In this paper, we compare various extensions of the definition of entropy, which have been proposed for non-equilibrium systems. It has recently been proposed that measures of information density may serve to quantify entropy in both equilibrium and nonequilibrium systems. We propose a new bit-wise method to measure the information density for off lattice systems. This method does not rely on coarse-graining of the particle coordinates. We then compare different estimates of the system entropy, based on information density and on the structural properties of the system, and check if the various entropies are mutually consistent and, importantly, whether they can detect non-trivial ordering phenomena. We find that, except for simple (one-dimensional) cases, the different methods yield answers that are at best qualitatively similar, and often not even that, although in several cases, different entropy estimates do detect ordering phenomena qualitatively. Our entropy estimates based on bit-wise data compression contain no adjustable scaling factor, and show large quantitative differences with the thermodynamic entropy obtained from equilibrium simulations. Hence, our results suggest that, at present, there is not yet a single, structure-based entropy definition that has general validity for equilibrium and non equilibrium systems.
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with probability proportional to (kq)^(-alpha), where alpha is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
59 - A. Vourdas 2019
Various inequalities (Boole inequality, Chung-Erdos inequality, Frechet inequality) for Kolmogorov (classical) probabilities are considered. Quantum counterparts of these inequalities are introduced, which have an extra `quantum correction term, and which hold for all quantum states. When certain sufficient conditions are satisfied, the quantum correction term is zero, and the classical version of these inequalities holds for all states. But in general, the classical version of these inequalities is violated by some of the quantum states. For example in bipartite systems, classical Boole inequalities hold for all rank one (factorizable) states, and are violated by some rank two (entangled) states. A logical approach to CHSH inequalities (which are related to the Frechet inequalities), is studied in this context.It is shown that CHSH inequalities hold for all rank one (factorizable) states, and are violated by some rank two (entangled) states. The reduction of the rank of a pure state by a quantum measurement with both orthogonal and coherent projectors, is studied. Bounds for the average rank reduction are given.
We describe two protocols for efficient data transmission using a single passive bus. Different types of interactions are obtained enabling deterministic transfer and teleportation of composite quantum systems for arbitrary subsystem dimension and for arbitrary numbers of subsystems. The subsystems may become entangled in the transmission in which case the protocols can serve generalized teleportation based information processing as well as storage and transmission functions. We explore the cases of two qubits and two qutrits in detail, obtaining a maximally entangling mapping of the composite systems and discuss the use of a continuous variable bus.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا