Do you want to publish a course? Click here

MAGMA: Inference and Prediction with Multi-Task Gaussian Processes

81   0   0.0 ( 0 )
 Added by Benjamin Guedj
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We investigate the problem of multiple time series forecasting, with the objective to improve multiple-step-ahead predictions. We propose a multi-task Gaussian process framework to simultaneously model batches of individuals with a common mean function and a specific covariance structure. This common mean is defined as a Gaussian process for which the hyper-posterior distribution is tractable. Therefore an EM algorithm can be derived for simultaneous hyper-parameters optimisation and hyper-posterior computation. Unlike previous approaches in the literature, we account for uncertainty and handle uncommon grids of observations while maintaining explicit formulations, by modelling the mean process in a non-parametric probabilistic framework. We also provide predictive formulas integrating this common mean process. This approach greatly improves the predictive performance far from observations, where information shared across individuals provides a relevant prior mean. Our overall algorithm is called textsc{Magma} (standing for Multi tAsk Gaussian processes with common MeAn), and publicly available as a R package. The quality of the mean process estimation, predictive performances, and comparisons to alternatives are assessed in various simulated scenarios and on real datasets.



rate research

Read More

A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.
Multi-output Gaussian processes (MOGPs) leverage the flexibility and interpretability of GPs while capturing structure across outputs, which is desirable, for example, in spatio-temporal modelling. The key problem with MOGPs is their computational scaling $O(n^3 p^3)$, which is cubic in the number of both inputs $n$ (e.g., time points or locations) and outputs $p$. For this reason, a popular class of MOGPs assumes that the data live around a low-dimensional linear subspace, reducing the complexity to $O(n^3 m^3)$. However, this cost is still cubic in the dimensionality of the subspace $m$, which is still prohibitively expensive for many applications. We propose the use of a sufficient statistic of the data to accelerate inference and learning in MOGPs with orthogonal bases. The method achieves linear scaling in $m$ in practice, allowing these models to scale to large $m$ without sacrificing significant expressivity or requiring approximation. This advance opens up a wide range of real-world tasks and can be combined with existing GP approximations in a plug-and-play way. We demonstrate the efficacy of the method on various synthetic and real-world data sets.
Due to the ease of modern data collection, applied statisticians often have access to a large set of covariates that they wish to relate to some observed outcome. Generalized linear models (GLMs) offer a particularly interpretable framework for such an analysis. In these high-dimensional problems, the number of covariates is often large relative to the number of observations, so we face non-trivial inferential uncertainty; a Bayesian approach allows coherent quantification of this uncertainty. Unfortunately, existing methods for Bayesian inference in GLMs require running times roughly cubic in parameter dimension, and so are limited to settings with at most tens of thousand parameters. We propose to reduce time and memory costs with a low-rank approximation of the data in an approach we call LR-GLM. When used with the Laplace approximation or Markov chain Monte Carlo, LR-GLM provides a full Bayesian posterior approximation and admits running times reduced by a full factor of the parameter dimension. We rigorously establish the quality of our approximation and show how the choice of rank allows a tunable computational-statistical trade-off. Experiments support our theory and demonstrate the efficacy of LR-GLM on real large-scale datasets.
In this work we introduce a reduced-rank algorithm for Gaussian process regression. Our numerical scheme converts a Gaussian process on a user-specified interval to its Karhunen-Lo`eve expansion, the $L^2$-optimal reduced-rank representation. Numerical evaluation of the Karhunen-Lo`eve expansion is performed once during precomputation and involves computing a numerical eigendecomposition of an integral operator whose kernel is the covariance function of the Gaussian process. The Karhunen-Lo`eve expansion is independent of observed data and depends only on the covariance kernel and the size of the interval on which the Gaussian process is defined. The scheme of this paper does not require translation invariance of the covariance kernel. We also introduce a class of fast algorithms for Bayesian fitting of hyperparameters, and demonstrate the performance of our algorithms with numerical experiments in one and two dimensions. Extensions to higher dimensions are mathematically straightforward but suffer from the standard curses of high dimensions.
Gaussian processes are distributions over functions that are versatile and mathematically convenient priors in Bayesian modelling. However, their use is often impeded for data with large numbers of observations, $N$, due to the cubic (in $N$) cost of matrix operations used in exact inference. Many solutions have been proposed that rely on $M ll N$ inducing variables to form an approximation at a cost of $mathcal{O}(NM^2)$. While the computational cost appears linear in $N$, the true complexity depends on how $M$ must scale with $N$ to ensure a certain quality of the approximation. In this work, we investigate upper and lower bounds on how $M$ needs to grow with $N$ to ensure high quality approximations. We show that we can make the KL-divergence between the approximate model and the exact posterior arbitrarily small for a Gaussian-noise regression model with $Mll N$. Specifically, for the popular squared exponential kernel and $D$-dimensional Gaussian distributed covariates, $M=mathcal{O}((log N)^D)$ suffice and a method with an overall computational cost of $mathcal{O}(N(log N)^{2D}(loglog N)^2)$ can be used to perform inference.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا