Do you want to publish a course? Click here

Leader-Driven Opinion Dynamics in Signed Social Networks With Asynchronous Trust/Distrust Level Evolution

380   0   0.0 ( 0 )
 Added by Lei Shi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Trust and distrust are common in the opinion interactions among agents in social networks, and they are described by the edges with positive and negative weights in the signed digraph, respectively. It has been shown in social psychology that although the opinions of most agents (followers) tend to prevail, sometimes one agent (leader) with a firm stand and strong influence can impact or even overthrow the preferences of followers. This paper aims to analyze how the leader influences the formation of followers opinions in signed social networks. In addition, this paper considers an asynchronous evolution mechanism of trust/distrust level based on opinion difference, in which the trust/distrust level between neighboring agents is portrayed as a nonlinear weight function of their opinion difference, and each agent interacts with the neighbors to update the trust/distrust level and opinion at the times determined by its own will. Based on the related properties of sub-stochastic and super-stochastic matrices, the inequality conditions about positive and negative weights to achieve opinion consensus and polarization are established. Some numerical simulations based on two well-known networks called the ``12 Angry Men network and the Karate Club network are provided to verify the correctness of the theoretical results.



rate research

Read More

In this paper, we propose a generalized opinion dynamics model (GODM), which can dynamically compute each persons expressed opinion, to solve the internal opinion maximization problem for social trust networks. In the model, we propose a new, reasonable and interpretable confidence index, which is determined by both persons social status and the evaluation around him. By using the theory of diagonally dominant, we obtain the optimal analytic solution of the Nash equilibrium with maximum overall opinion. We design a novel algorithm to maximize the overall with given budget by modifying the internal opinions of people in the social trust network, and prove its optimality both from the algorithm itself and the traditional optimization algorithm-ADMM algorithms with $l_1$-regulations. A series of experiments are conducted, and the experimental results show that our method is superior to the state-of-the-art in four datasets. The average benefit has promoted $67.5%$, $83.2%$, $31.5%$, and $33.7%$ on four datasets, respectively.
Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent results have shown that structural balance is necessary for polarization in networks with fixed, strongly connected neighbor relationships when the opinion dynamics are described by DeGroot-type averaging rules. We develop this line of research in this paper in two steps. First, we consider fixed, not necessarily strongly connected, neighbor relationships. It is shown that if the network includes a strongly connected subnetwork containing mistrust, which influences the rest of the network, then no opinion clustering is possible when that subnetwork is not structurally balanced; all the opinions become neutralized in the end. In contrast, it is shown that when that subnetwork is indeed structurally balanced, the agents of the subnetwork evolve into two polarized camps and the opinions of all other agents in the network spread between these two polarized opinions. Second, we consider time-varying neighbor relationships. We show that the opinion separation criteria carry over if the conditions for fixed graphs are extended to joint graphs. The results are developed for both discrete-time and continuous-time models.
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types of agents: regular agents, who update their beliefs according to information that they receive from their social neighbors; and stubborn agents, who never update their opinions. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate random vector. The structure of the network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector evolves according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain with absorbing states corresponding to the stubborn agents and converges to a harmonic vector, with every regular agents value being the weighted average of its neighbors values, and boundary conditions corresponding to the stubborn agents. Expected cross-products of the agents beliefs allow for a similar characterization in terms of coupled Markov chains on the network. We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of emph{homogeneous influence} emerges, whereby the stationary beliefs marginal distributions of most of the regular agents have approximately equal first and second moments.
We propose a mathematical model to study coupled epidemic and opinion dynamics in a network of communities. Our model captures SIS epidemic dynamics whose evolution is dependent on the opinions of the communities toward the epidemic, and vice versa. In particular, we allow both cooperative and antagonistic interactions, representing similar and opposing perspectives on the severity of the epidemic, respectively. We propose an Opinion-Dependent Reproduction Number to characterize the mutual influence between epidemic spreading and opinion dissemination over the networks. Through stability analysis of the equilibria, we explore the impact of opinions on both epidemic outbreak and eradication, characterized by bounds on the Opinion-Dependent Reproduction Number. We also show how to eradicate epidemics by reshaping the opinions, offering researchers an approach for designing control strategies to reach target audiences to ensure effective epidemic suppression.
In contrast with the scalar-weighted networks, where bipartite consensus can be achieved if and only if the underlying signed network is structurally balanced, the structural balance property is no longer a graph-theoretic equivalence to the bipartite consensus in the case of signed matrix-weighted networks. To re-establish the relationship between the network structure and the bipartite consensus solution, the non-trivial balancing set is introduced which is a set of edges whose sign negation can transform a structurally imbalanced network into a structurally balanced one and the weight matrices associated with edges in this set have a non-trivial intersection of null spaces. We show that necessary and/or sufficient conditions for bipartite consensus on matrix-weighted networks can be characterized by the uniqueness of the non-trivial balancing set, while the contribution of the associated non-trivial intersection of null spaces to the steady-state of the matrix-weighted network is examined. Moreover, for matrix-weighted networks with a positive-negative spanning tree, necessary and sufficient condition for bipartite consensus using the non-trivial balancing set is obtained. Simulation examples are provided to demonstrate the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا