Do you want to publish a course? Click here

Generalized Opinion Dynamics Model for Social Trust Networks in Opinion Maximization

71   0   0.0 ( 0 )
 Added by Lele Liu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a generalized opinion dynamics model (GODM), which can dynamically compute each persons expressed opinion, to solve the internal opinion maximization problem for social trust networks. In the model, we propose a new, reasonable and interpretable confidence index, which is determined by both persons social status and the evaluation around him. By using the theory of diagonally dominant, we obtain the optimal analytic solution of the Nash equilibrium with maximum overall opinion. We design a novel algorithm to maximize the overall with given budget by modifying the internal opinions of people in the social trust network, and prove its optimality both from the algorithm itself and the traditional optimization algorithm-ADMM algorithms with $l_1$-regulations. A series of experiments are conducted, and the experimental results show that our method is superior to the state-of-the-art in four datasets. The average benefit has promoted $67.5%$, $83.2%$, $31.5%$, and $33.7%$ on four datasets, respectively.



rate research

Read More

Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent results have shown that structural balance is necessary for polarization in networks with fixed, strongly connected neighbor relationships when the opinion dynamics are described by DeGroot-type averaging rules. We develop this line of research in this paper in two steps. First, we consider fixed, not necessarily strongly connected, neighbor relationships. It is shown that if the network includes a strongly connected subnetwork containing mistrust, which influences the rest of the network, then no opinion clustering is possible when that subnetwork is not structurally balanced; all the opinions become neutralized in the end. In contrast, it is shown that when that subnetwork is indeed structurally balanced, the agents of the subnetwork evolve into two polarized camps and the opinions of all other agents in the network spread between these two polarized opinions. Second, we consider time-varying neighbor relationships. We show that the opinion separation criteria carry over if the conditions for fixed graphs are extended to joint graphs. The results are developed for both discrete-time and continuous-time models.
Trust and distrust are common in the opinion interactions among agents in social networks, and they are described by the edges with positive and negative weights in the signed digraph, respectively. It has been shown in social psychology that although the opinions of most agents (followers) tend to prevail, sometimes one agent (leader) with a firm stand and strong influence can impact or even overthrow the preferences of followers. This paper aims to analyze how the leader influences the formation of followers opinions in signed social networks. In addition, this paper considers an asynchronous evolution mechanism of trust/distrust level based on opinion difference, in which the trust/distrust level between neighboring agents is portrayed as a nonlinear weight function of their opinion difference, and each agent interacts with the neighbors to update the trust/distrust level and opinion at the times determined by its own will. Based on the related properties of sub-stochastic and super-stochastic matrices, the inequality conditions about positive and negative weights to achieve opinion consensus and polarization are established. Some numerical simulations based on two well-known networks called the ``12 Angry Men network and the Karate Club network are provided to verify the correctness of the theoretical results.
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types of agents: regular agents, who update their beliefs according to information that they receive from their social neighbors; and stubborn agents, who never update their opinions. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate random vector. The structure of the network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector evolves according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain with absorbing states corresponding to the stubborn agents and converges to a harmonic vector, with every regular agents value being the weighted average of its neighbors values, and boundary conditions corresponding to the stubborn agents. Expected cross-products of the agents beliefs allow for a similar characterization in terms of coupled Markov chains on the network. We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of emph{homogeneous influence} emerges, whereby the stationary beliefs marginal distributions of most of the regular agents have approximately equal first and second moments.
We propose a setting for two-phase opinion dynamics in social networks, where a nodes final opinion in the first phase acts as its initial biased opinion in the second phase. In this setting, we study the problem of two camps aiming to maximize adoption of their respective opinions, by strategically investing on nodes in the two phases. A nodes initial opinion in the second phase naturally plays a key role in determining the final opinion of that node, and hence also of other nodes in the network due to its influence on them. More importantly, this bias also determines the effectiveness of a camps investment on that node in the second phase. To formalize this two-phase investment setting, we propose an extension of Friedkin-Johnsen model, and hence formulate the utility functions of the camps. There is a tradeoff while splitting the budget between the two phases. A lower investment in the first phase results in worse initial biases for the second phase, while a higher investment spares a lower available budget for the second phase. We first analyze the non-competitive case where only one camp invests, for which we present a polynomial time algorithm for determining an optimal way to split the camps budget between the two phases. We then analyze the case of competing camps, where we show the existence of Nash equilibrium and that it can be computed in polynomial time under reasonable assumptions. We conclude our study with simulations on real-world network datasets, in order to quantify the effects of the initial biases and the weightage attributed by nodes to their initial biases, as well as that of a camp deviating from its equilibrium strategy. Our main conclusion is that, if nodes attribute high weightage to their initial biases, it is advantageous to have a high investment in the first phase, so as to effectively influence the biases to be harnessed in the second phase.
This paper examines the interplay of opinion exchange dynamics and communication network formation. An opinion formation procedure is introduced which is based on an abstract representation of opinions as $k$--dimensional bit--strings. Individuals interact if the difference in the opinion strings is below a defined similarity threshold $d_I$. Depending on $d_I$, different behaviour of the population is observed: low values result in a state of highly fragmented opinions and higher values yield consensus. The first contribution of this research is to identify the values of parameters $d_I$ and $k$, such that the transition between fragmented opinions and homogeneity takes place. Then, we look at this transition from two perspectives: first by studying the group size distribution and second by analysing the communication network that is formed by the interactions that take place during the simulation. The emerging networks are classified by statistical means and we find that non--trivial social structures emerge from simple rules for individual communication. Generating networks allows to compare model outcomes with real--world communication patterns.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا