No Arabic abstract
Thermal hysteresis is recognized as one of the main drawbacks for cyclical applications of magnetocaloric and ferromagnetic shape memory materials with first order transformations. As such, the challenge is to develop strategies that improve the compatibility between the phases involved in the transitions and study its influence on thermal hysteresis. With this purpose, we explore the thermal, structural and magnetic properties of the Ni2Mn1-xCuxGa0.84Al0.16 Heusler alloys. The alloys present a thermal hysteresis reduction of ~60% when the Cu content in the compound varies from x = 0.10 to x = 0.25, with a minimum hysteresis width of 6 K being achieved. We applied the geometric non-linear theory of martensite to address the phase compatibility, quantified by the parameter lambda2, the middle eigenvalue of the transformation stretch tensor, and found that the minimum of hysteresis is associated with a better crystallographic compatibility (lambda2 closer to 1) between the austenite and martensite phases. In addition, we show that the valley-like properties of hysteresis found in the Ni2Mn1-xCuxGa0.84Al0.16 compounds is present in several other alloys in the literature. These results provide new pathways to understand as well as to masters the phase compatibility and ultimately achieve a low thermal hysteresis in multifunctional Heusler alloys.
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We consider compounds which exhibit phonon instabilities and compare them with their stable counterparts. The analysis of the electronic structure allows us to identify the characteristic features leading to structural instabilities. The phonon dispersions of the unstable compounds show that, while the acoustic modes tend to soften, the optical modes disperse in a way which is significantly different from that of the stable structures. The optical modes that appear to disperse at anomalously low frequencies are Raman active, which is considered an indication of a stronger polarizability of the unstable systems. We show that phonon instability of the TA$_{2}$ mode in Heusler alloys is driven by interaction(repulsion) with the low energy optical vibrations. The optical modes show their unusual behavior due to covalent interactions which are additional bonding features incommensurate with the dominating metallicity in Heusler compounds.
We present a theoretical proposal for the design of a thermal switch based on the anisotropy of the thermal conductivity of PbTiO3 and of the possibility to rotate the ferroelectric polarization with an external electric field. Our calculations are based on an iterative solution of the phonon Boltzmann Transport Equation and rely on interatomic force constants computed within an efficient second-principles density functional theory scheme. We also characterize the hysteresis cycle of the thermal conductivity in presence of an applied electric field and show that the response time would be limited by speed of the ferroelectric switch itself and thus can operate in the high-frequency regime.
Using first-principles electronic structure calculations, we have studied the dependence of the Curie temperature on external hydrostatic pressure for random Ni2MnSn Heusler alloys doped with Cu and Pd atoms, over the entire range of dopant concentrations. The Curie temperatures are calculated by applying random-phase approximation to the Heisenberg Hamiltonian whose parameters are determined using the linear response and multiple scattering methods, based on density-functional theory. In (Ni1-x,Pdx)2MnSn alloys, the Curie temperature is found to increase with applied pressure over the whole concentration range. The crossover from the increase to the decrease of the Curie temperature with pressure takes place for Cu concentrations larger than about 70% in (Ni1-x,Cux)2MnSn Heusler alloys. The results for the reference Ni2MnSn Heusler alloy agree well with a previous theoretical study of E. Sasioglu, L. M. Sandratskii and P. Bruno Phys. Rev. B 71 214412 (2005) and also reasonably well with available experimental data. Results for the spin-disorder-induced part of the resistivity in (Ni1-x,Pdx)2MnSn Heusler alloys, calculated by using the disordered local moment model, are also presented. Finally, a qualitative understanding of the results, based on Andersons superexchange interaction and Stearns model of the indirect exchange interaction between localized and itinerant d electrons, is provided.
Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni$_{54}$Mn$_{23}$Al$_{23}$ Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersion curves for this alloy system. We find that the frequencies of the TA$_2$ modes are relatively low. This branch exhibits an anomaly (dip) at a wave number $xi_{0} ={1/3}approx 0.33$, which softens with decreasing temperature. Associated with this anomalous dip at $xi_{0}$, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.
Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnSn, Cu$_2$MnSn and Pd$_2$MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.