Do you want to publish a course? Click here

The development of an implicit full f method for electromagnetic particle simulations of Alfven waves and energetic particle physics

122   0   0.0 ( 0 )
 Added by Zhixin Lu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, an implicit scheme for particle-in-cell/Fourier electromagnetic simulations is developed and applied to studies of Alfven waves in one dimension and three-dimensional tokamak plasmas. An analytical treatment is introduced to achieve efficient convergence of the iterative solution of the implicit field-particle system. First, its application to the one-dimensional uniform plasma demonstrates its applicability in a broad range of $beta/m_e$ values. Second, toroidicity induced Alfven eigenmodes (TAE) are simulated in a three-dimensional axisymmetric tokamak plasma, using the widely studied case defined by the International Tokamak Physics Activity (ITPA) Energetic Particle (EP) Topical Group. The real frequency and the growth (or damping) rate of the TAE with (or without) EPs agree with previous results reasonably well. The full f electromagnetic particle scheme established in this work provides a possible natural choice for EP transport studies where large profile variation and arbitrary particle distribution functions need to be treated in kinetic simulations.



rate research

Read More

93 - A. Di Siena , T. Gorler , E. Poli 2018
In recent years, a strong reduction of plasma turbulence in the presence of energetic particles has been reported in a number of magnetic confinement experiments and corresponding gyrokinetic simulations. While highly relevant to performance predictions for burning plasmas, an explanation for this primarily nonlinear effect has remained elusive so far. A thorough analysis finds that linearly marginally stable energetic particle driven modes are excited nonlinearly, depleting the energy content of the turbulence and acting as an additional catalyst for energy transfer to zonal modes (the dominant turbulence saturation channel). Respective signatures are found in a number of simulations for different JET and ASDEX Upgrade discharges with reduced transport levels attributed to energetic ion effects.
This paper presents a study of the interaction between Alfven modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are presented, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed: at low energetic particles concentration, the Alfven mode saturates at much higher level in presence of zonal structures; on the other hand at high energetic particles concentration the difference is less pronounced. The former regime is characterized by the zonal structure (identified as an energetic particle driven geodesic acoustic mode), being more unstable than the Alfven mode. In the latter regime the Alfven mode is more unstable than the zonal structure. The theoretical explanation is given in terms of a 3-wave coupling of the energetic particle driven geodesic acoustic mode and Alfven mode, mediated by the curvature-pressure coupling term of the energetic particles.
A fully implicit particle-in-cell method for handling the $v_parallel$-formalism of electromagnetic gyrokinetics has been implemented in XGC. By choosing the $v_parallel$-formalism, we avoid introducing the non-physical skin terms in Amp`{e}res law, which are responsible for the well-known ``cancellation problem in the $p_parallel$-formalism. The $v_parallel$-formalism, however, is known to suffer from a numerical instability when explicit time integration schemes are used due to the appearance of a time derivative in the particle equations of motion from the inductive component of the electric field. Here, using the conventional $delta f$ scheme, we demonstrate that our implicitly discretized algorithm can provide numerically stable simulation results with accurate dispersive properties. We verify the algorithm using a test case for shear Alfv{e}n wave propagation in addition to a case demonstrating the ITG-KBM transition. The ITG-KBM transition case is compared to results obtained from other $delta f$ gyrokinetic codes/schemes, whose verification has already been archived in the literature.
The aim of this study is to analyze the destabilization of Alfven Eigenmodes (AE) by multiple energetic particles (EP) species in DIII-D and LHD discharges. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species, including the effect of the acoustic modes, diamagnetic currents and helical couplings. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations with multiple NBI lines show three different regimes: the non damped regime where the multi beam AEs growth rate is larger compared to the growth rate of the AEs destabilized by the individual NBI lines, the interaction regime where the multi beam AEs growth rate is smaller than the single NBI AEs and the damped regime where the AEs are suppressed. Operations in the damped regime requires EP species with different density profile flatness or gradient locations. In addition, the AEs growth rate in the interaction regime is further reduced if the combined NBI lines have similar beam temperatures and the beta of the NBI line with flatter EP density profile increases. Then, optimization trends are identified in DIII-D high poloidal beta and LHD low density / magnetic field discharges with multiple NBI lines as well as the configuration requirements to operate in the damped and interaction regimes. DIII-D simulations show a decrease of the n=2 to 6 AEs growth rate and n=1 AE are stabilized in the LHD case. The helical coupling effects in LHD simulations lead to a transition from the interaction to the damped regime of the n=2,-8,12 helical family.
We design and develop a new Particle-in-Cell (PIC) method for plasma simulations using Deep-Learning (DL) to calculate the electric field from the electron phase space. We train a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN) to solve the two-stream instability test. We verify that the DL-based MLP PIC method produces the correct results using the two-stream instability: the DL-based PIC provides the expected growth rate of the two-stream instability. The DL-based PIC does not conserve the total energy and momentum. However, the DL-based PIC method is stable against the cold-beam instability, affecting traditional PIC methods. This work shows that integrating DL technologies into traditional computational methods is a viable approach for developing next-generation PIC algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا