Do you want to publish a course? Click here

Study of Alfven Eigenmodes stability in plasma with multiple NBI driven energetic particle specie

73   0   0.0 ( 0 )
 Added by Jacobo Varela
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this study is to analyze the destabilization of Alfven Eigenmodes (AE) by multiple energetic particles (EP) species in DIII-D and LHD discharges. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species, including the effect of the acoustic modes, diamagnetic currents and helical couplings. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations with multiple NBI lines show three different regimes: the non damped regime where the multi beam AEs growth rate is larger compared to the growth rate of the AEs destabilized by the individual NBI lines, the interaction regime where the multi beam AEs growth rate is smaller than the single NBI AEs and the damped regime where the AEs are suppressed. Operations in the damped regime requires EP species with different density profile flatness or gradient locations. In addition, the AEs growth rate in the interaction regime is further reduced if the combined NBI lines have similar beam temperatures and the beta of the NBI line with flatter EP density profile increases. Then, optimization trends are identified in DIII-D high poloidal beta and LHD low density / magnetic field discharges with multiple NBI lines as well as the configuration requirements to operate in the damped and interaction regimes. DIII-D simulations show a decrease of the n=2 to 6 AEs growth rate and n=1 AE are stabilized in the LHD case. The helical coupling effects in LHD simulations lead to a transition from the interaction to the damped regime of the n=2,-8,12 helical family.



rate research

Read More

The aim of this study is to analyze the stability of the Alfven eigenmodes (AE) in the Chinese First Quasi-axisymmetric Stellarator (CFQS). The AE stability is calculated using the code FAR3d that solves the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moment for the energetic particles (EP) species including the effect of the helical couplings and acoustic modes. The Landau damping and resonant destabilization effects are added in the model by a given closure relation. The simulation results indicate the destabilization of n = 1 to 4 AEs by EP during the slowing down process, particularly n = 1 and n = 2 toroidal AEs (TAE), n = 3 elliptical AE (EAE) and n = 4 non circular AE (NAE). If the resonance is caused by EPs with an energy above 17 keV (weakly thermalized EP), n = 2 EAEs and n = 3 NAEs are unstable. On the other hand, EPs with an energy below 17 keV (late thermalization stage) lead to the destabilization of n = 3 and n = 4 TAEs. The simulations for an off-axis NBI injection indicate the further destabilization of n = 2 to 4 AEs although the growth rate of the n = 1 AEs slightly decreases, so no clear optimization trend with respect to the NBI deposition region is identified. In addition, n = 2, 4 helical AE (HAE) are unstable above an EP b{eta} threshold. Also, if the thermal b{eta} of the simulation increases (higher thermal plasma density) the AE stability of the plasma improves. The simulations including the effect of the finite Larmor radius and electron-ion Landau damping show the stabilization of the n = 1 to 4 EAE/NAEs as well as a decrease of the growth rate and frequency of the n = 1 to 4 BAE/TAEs.
The aim of the present study is to analyze the stability of the pressure gradient driven modes (PM) and Alfven eigenmodes (AE) in the Large Helical Device (LHD) plasma if the rotational transform profile is modified by the current drive of the tangential neutral beam injectors (NBI). This study forms a basic search for optimized operation scenarios with reduced mode activity. The analysis is performed using the code FAR3d which solves the reduced MHD equations describing the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations for density and parallel velocity moments of the energetic particle (EP) species, including the effect of the acoustic modes. The Landau damping and resonant destabilization effects are added via the closure relation. On-axis and off-axis NBI current drive modifies the rotational transform which becomes strongly distorted as the intensity of the neutral beam current drive (NBCD) increases, leading to wider continuum gaps and modifying the magnetic shear. The simulations with on-axis NBI injection show that a counter (ctr-) NBCD in inward shifted and default configurations leads to a lower growth rate of the PM, although strong n=1 and 2 AEs can be destabilized. For the outward shifted configurations, a co-NBCD improves the AEs stability but the PM are further destabilized if the co-NBCD intensity is 30 kA/T. If the NBI injection is off-axis, the plasma stability is not significantly improved due to the further destabilization of the AE and energetic particle modes (EPM) in the middle and outer plasma region.
This paper presents a study of the interaction between Alfven modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are presented, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed: at low energetic particles concentration, the Alfven mode saturates at much higher level in presence of zonal structures; on the other hand at high energetic particles concentration the difference is less pronounced. The former regime is characterized by the zonal structure (identified as an energetic particle driven geodesic acoustic mode), being more unstable than the Alfven mode. In the latter regime the Alfven mode is more unstable than the zonal structure. The theoretical explanation is given in terms of a 3-wave coupling of the energetic particle driven geodesic acoustic mode and Alfven mode, mediated by the curvature-pressure coupling term of the energetic particles.
Recent upgrades in H-1 power supplies have enabled the operation of the H-1 experiment at higher heating powers than previously attainable. A heating power scan in mixed hydrogen/helium plasmas reveals a change in mode activity with increasing heating power. At low power (<50 kW) modes with beta-induced Alfven eigenmode (BAE) frequency scaling are observed. At higher power modes consistent with an analysis of nonconventional Global Alfven Eigenmodes (GAEs) are observed, the subject of this work. We have computed the mode continuum, and identified GAE structures using the ideal MHD solver CKA and the gyrokinetic code EUTERPE. An analytic model for ICRH-heated minority ions is used to estimate the fast ion temperature from the hydrogen species. Linear growth rate scans using a local flux surface stability calculation, LGRO, are performed. These studies demonstrate growth from circulating particles whose speed is significantly less than the Alfven speed, and are resonant with the mode through harmonics of the Fourier decomposition of the strongly-shaped heliac magnetic field. They reveal drive is possible with a small, hot energetic tail of the hydrogen species. Local linear growth rate scans are also complemented with global calculations from CKA and EUTERPE. These qualitatively confirm the findings from the LGRO study, and show that the inclusion of finite Larmor radius effects can reduce the growth rate by a factor of three, but do not affect marginal stability. Finally, a study of damping of the global mode with the thermal plasma is conducted, computing continuum, and the damping arising from parallel electric fields. We find that continuum damping is of order 0.1% for the configuration studied. The inclusion of resistivity lifts the damping to 19%. Such large damping is consistent with experimental observations that in absence of drive the mode decays rapidly (~0.1 ms).
Spontaneous nonlinear excitation of geodesic acoustic mode (GAM) by toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, the nonlinear decay process depends on thermal ion beta value. Here, beta is the plasma thermal to magnetic pressure ratio. In the low-beta limit, TAE decays into a GAM and a lower TAE sideband in the toroidicity induced shear Alfven wave continuous spectrum gap; while in the high-beta limit, TAE decays into a GAM and a propagating kinetic TAE in the continuum. Both cases are investigated for the spontaneous decay conditions. The nonlinear saturation levels of both GAM and daughter wave are derived. The corresponding power balance and wave particle power transfer to thermal plasma are computed. Implications on thermal plasma heating are also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا