No Arabic abstract
With the hit of new pandemic threats, scientific frameworks are needed to understand the unfolding of the epidemic. The use of mobile apps that are able to trace contacts is of utmost importance in order to control new infected cases and contain further propagation. Here we present a theoretical approach using both percolation and message--passing techniques, to the role of contact tracing, in mitigating an epidemic wave. We show how the increase of the app adoption level raises the value of the epidemic threshold, which is eventually maximized when high-degree nodes are preferentially targeted. Analytical results are compared with extensive Monte Carlo simulations showing good agreement for both homogeneous and heterogeneous networks. These results are important to quantify the level of adoption needed for contact-tracing apps to be effective in mitigating an epidemic.
The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient mean-field approximations have been put forward in the literature in recent years. The optimization problem can be recast into a constrained one in which the constraints enforce local mean-field equations describing the average stationary state of the epidemic process. For a wide class of epidemic models, including the susceptible-infected-removed and the susceptible-infected-susceptible models, we define a message-passing approach to network immunization that allows us to study the statistical properties of epidemic outbreaks in the presence of immunized nodes as well as to find (nearly) optimal immunization sets for a given choice of parameters and costs. The algorithm scales linearly with the size of the graph and it can be made efficient even on large networks. We compare its performance with topologically based heuristics, greedy methods, and simulated annealing.
Approximate Message Passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problem. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of the Gauss-Bernouilli prior which utilizes a Restricted Boltzmann Machine (RBM) trained on the signal support to push reconstruction performance beyond that of simple iid priors for signals whose support can be well represented by a trained binary RBM. We present and analyze two methods of RBM factorization and demonstrate how these affect signal reconstruction performance within our proposed algorithm. Finally, using the MNIST handwritten digit dataset, we show experimentally that using an RBM allows AMP to approach oracle-support performance.
We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well.
The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction $q$ of `optimal agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.
Message-passing methods provide a powerful approach for calculating the expected size of cascades either on random networks (e.g., drawn from a configuration-model ensemble or its generalizations) asymptotically as the number $N$ of nodes becomes infinite or on specific finite-size networks. We review the message-passing approach and show how to derive it for configuration-model networks using the methods of (Dhar et al., 1997) and (Gleeson, 2008). Using this approach, we explain for such networks how to determine an analytical expression for a cascade condition, which determines whether a global cascade will occur. We extend this approach to the message-passing methods for specific finite-size networks (Shrestha and Moore, 2014; Lokhov et al., 2015), and we derive a generalized cascade condition. Throughout this chapter, we illustrate these ideas using the Watts threshold model.