Do you want to publish a course? Click here

The Universe at z>10: Predictions for JWST from the UniverseMachine DR1

108   0   0.0 ( 0 )
 Added by Peter Behroozi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The James Webb Space Telescope (JWST) is expected to observe galaxies at $z>10$ that are presently inaccessible. Here, we use a self-consistent empirical model, the UniverseMachine, to generate mock galaxy catalogues and lightcones over the redshift range $z=0-15$. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy-halo relationships, and galaxy-galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at $z<10$. We predict that Cycle 1 JWST surveys will very likely detect galaxies with $M_*>10^7 M_odot$ and/or $M_{1500}<-17$ out to at least $zsim 13.5$. Number density uncertainties at $z>12$ expand dramatically, so efforts to detect $z>12$ galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits ($M_ast < 10^7M_odot$ or $M_mathrm{1500}>-17$). For reionization models, extrapolating luminosity functions with a constant faint-end slope from $M_{1500}=-17$ down to $M_{1500}=-12$ gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to $zsim 12$. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and lightcones for common fields are available online.



rate research

Read More

We present a method to flexibly and self-consistently determine individual galaxies star formation rates (SFRs) from their host haloes potential well depths, assembly histories, and redshifts. The method is constrained by galaxies observed stellar mass functions, SFRs (specific and cosmic), quenched fractions, UV luminosity functions, UV-SM relations, IRX-UV relations, auto- and cross-correlation functions (including quenched and star-forming subsamples), and quenching dependence on environment; each observable is reproduced over the full redshift range available, up to 0<z<10. Key findings include: galaxy assembly correlates strongly with halo assembly; quenching at z>1 correlates strongly with halo mass; quenched fractions at fixed halo mass decrease with increasing redshift; massive quenched galaxies reside in higher-mass haloes than star-forming galaxies at fixed galaxy mass; star-forming and quenched galaxies star formation histories at fixed mass differ most at z<0.5; satellites have large scatter in quenching timescales after infall, and have modestly higher quenched fractions than central galaxies; Planck cosmologies result in up to 0.3 dex lower stellar mass-halo mass ratios at early times; and, nonetheless, stellar mass-halo mass ratios rise at z>5. Also presented are revised stellar mass-halo mass relations for all, quenched, star-forming, central, and satellite galaxies; the dependence of star formation histories on halo mass, stellar mass, and galaxy SSFR; quenched fractions and quenching timescale distributions for satellites; and predictions for higher-redshift galaxy correlation functions and weak lensing surface densities. The public data release (DR1) includes the massively parallel (>10^5 cores) implementation (the UniverseMachine), the newly compiled and remeasured observational data, derived galaxy formation constraints, and mock catalogues including lightcones.
205 - Marcel Neeleman 2016
We use the Hubble Space Telescope (HST) archive of ultraviolet (UV) quasar spectroscopy to conduct the first blind survey for damped Ly-alpha absorbers (DLAs) at low redshift (z < 1.6). Our statistical sample includes 463 quasars with spectral coverage spanning a total redshift path, dz = 123.3 or an absorption path, dX = 229.7. Within this survey path, we identify 4 DLAs, defined as absorbers with HI column density N(HI) >= 10^20.3cm-2, which implies an incidence per absorption length, l(X)= 0.017(+0.014-0.008) at a median survey path redshift of z=0.623. While our estimate of l(X) is lower than earlier estimates at z ~ 0 from HI 21cm emission studies, the results are consistent within the measurement uncertainties. Our dataset is too small to properly sample the N(HI) frequency distribution function f(N(HI),X), but the observed distribution agrees with previous estimates at z > 2. Adopting the z > 2 shape of f(N(HI),X), we infer an HI mass density at z ~ 0.6 of rho_HI = 0.25(+0.20-0.12) x 10^8 Msol Mpc-3. This is significantly lower than previous estimates from targeted DLA surveys with the HST, but consistent with results from low-z HI 21cm observations, and suggests that the neutral gas density of the universe has been decreasing over the past 10 Gyrs.
90 - William Cowley 2017
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a new ($800$ Mpc)$^{3}$ dark matter only simulation with a halo mass resolution of $M_{rm halo}>2times10^{9}$ $h^{-1}$ M$_{odot}$. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at $zlesssim6$, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for $7lesssim zlesssim10$ which is in good agreement with observations. We make predictions for the evolution of the luminosity function from $z=16$ to $z=0$ in all broadband filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on $JWST$ and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that $sim1$ galaxy per field of view will be observable at $zsim11$ for a $10^4$ s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with $Planck$ data, predicts number densities of observable galaxies $sim5times$ greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at $zgtrsim6$. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with $JWST$, and for the angular sizes of galaxies in $JWST$ bands.
As the Universe emerged from its initial hot and dense phase, its chemical composition was extremely simple, being limited to stable H and He isotopes, and traces of Li. The first stars that formed had such initial composition. However, they quickly began to produce a whole array of heavier nuclei, polluting the interstellar medium. While none among these first stars has been detected to date, an increasing sample exists of their direct descendant, stars with heavy elements content of the order of 1/1000 of the solar value, or less. In most cases, such stars should have formed at redshift of about 10 or beyond, and their chemical composition can provide crucial constraints to the nature of the very first stars. Extremely metal poor (EMP) stars are exceedingly rare. We used the low resolution spectra obtained by the Sloan Digital Sky Survey (SDSS) to search for EMP candidates: results of VLT-UVES high resolution follow-up for 16 of them is presented here. A newly developed automatic abundance analysis and parameter determination code, MyGIsFOS, has been employed to analyze the detailed chemical abundances of such stars.
We report on five compact, extremely young (<10Myr) and blue (beta_UV<-2.5, F_lambda =lambda^beta) objects observed with VLT/MUSE at redshift 3.1169, 3.235, in addition to three objects at z=6.145. These sources are magnified by the Hubble Frontier Field galaxy clusters MACS~J0416 and AS1063. Their de-lensed half light radii (Re) are between 16 to 140pc, the stellar masses are ~1-20 X 10^6 Msun, the magnitudes are m_uv=28.8 - 31.4 (-17<Muv<-15) and specific star formation rates can be as large as ~800Gyr^-1. Multiple images of these systems are widely separated in the sky (up to 50) and individually magnified by factors 3-40. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-globular clusters (proto-GC) discovered so far. Rest-frame optical high dispersion spectroscopy of one of them at z=3.1169 yields a velocity dispersion sigma_v~20km/s, implying a dynamical mass dominated by the stellar mass. Another object at z=6.145, with de-lensed Muv ~ -15.3 (m_uv ~ 31.4), shows a stellar mass and a star-formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z=6.145, with de-lensed m_uv ~ 32, a stellar mass of 0.5 X 10^6 Msun and a star formation rate of 0.06 Msun/yr is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z>3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the universe and augment Lya visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا