Do you want to publish a course? Click here

Gamow-Teller strength in $^{48}$Ca and $^{78}$Ni with the charge-exchange subtracted second random-phase approximation

158   0   0.0 ( 0 )
 Added by Danilo Gambacurta
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We develop a fully self-consistent subtracted second random-phase approximation for charge-exchange processes with Skyrme energy-density functionals. As a first application, we study Gamow-Teller excitations in the doubly-magic nucleus $^{48}$Ca, the lightest double-$beta$ emitter that could be used in an experiment, and in $^{78}$Ni, the single-beta-decay rate of which is known. The amount of Gamow-Teller strength below 20 or 30 MeV is considerably smaller than in other energy-density-functional calculations and agrees better with experiment in $^{48}$Ca, as does the beta-decay rate in $^{78}$Ni. These important results, obtained without textit{ad hoc} quenching factors, are due to the presence of two-particle -- two-hole configurations. Their density progressively increases with excitation energy, leading to a long high-energy tail in the spectrum, a fact that may have implications for the computation of nuclear matrix elements for neutrinoless double-$beta$ decay in the same framework.

rate research

Read More

We analyze the isoscalar response related to breathing modes with particular attention being paid to low-lying excitations in neutron--rich nuclei. We use the subtracted second random--phase approximation (SSRPA) to describe microscopically the response. By increasing the neutron excess, we study the evolution of the response in Ca isotopes going from $^{40}$Ca to $^{48}$Ca and to $^{60}$Ca as well as in $N=20$ isotones going from $^{40}$Ca to $^{36}$S and to $^{34}$Si. Finally, the case of $^{68}$Ni is investigated. We predict soft monopole modes in neutron--rich nuclei which are driven by neutron excitations. At variance with dipole pygmy modes, these neutron excitations are not only strongly dominant at the surface of the nucleus but over its entire volume. The effect of the mixing with two particle-two hole configurations induced by the SSRPA model is analyzed. The properties of such soft neutron modes are investigated in terms of their excitation energies, transition densities and wave--function components. Their collectivity is also discussed as a function of the isospin asymmetry and of the mass of the nucleus. The link between such low--energy compression modes and a compressibility modulus introduced for neutron--rich infinite matter is finally studied.
Although many random-phase approximation (RPA) calculations of the Gamow-Teller (GT) response exist, this is not the case for calculations going beyond the mean-field approximation. We apply a consistent model that includes the coupling of the GT resonance to low-lying vibrations, to nuclei of the $fp$ shell. Among other motivations, our goal is to see if the particle-vibration coupling can redistribute the low-lying GT$^+$ strength that is relevant for electron-capture processes in core-collapse supernova. We conclude that the lowering and fragmentation of that strength are consistent with the experimental findings and validate our model. However, the particle-vibration coupling cannot account for the quenching of the total value of the low-lying strength.
We make use of a subtraction procedure, introduced to overcome double--counting problems in beyond--mean--field theories, in the second random--phase--approximation (SRPA) for the first time. This procedure guarantees the stability of SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density--functional theory. We illustrate applications to the monopole and quadrupole response and to low--lying $0^+$ and $2^+$ states in the nucleus $^{16}$O. We show that the subtraction procedure leads to: (i) results that are weakly cutoff dependent; (ii) a considerable reduction of the SRPA downwards shift with respect to the random--phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of 2 particle--2 hole configurations ($2p2h$) on the excitation spectra of medium--mass and heavy nuclei.
101 - G. Hagen , G. R. Jansen , 2016
Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic $^{78}$Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. We predict the $J^pi=2_1^+$ state in $^{78}$Ni from a correlation with the $J^pi=2_1^+$ state in $^{48}$Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that $^{78}$Ni is doubly magic, and the predicted low-lying states of $^{79,80}$Ni open the way for shell-model studies of many more rare isotopes.
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nuclei, produced in fragmentation reactions at GSI and also with ($^3${He},$t$) charge-exchange (CE) reactions corresponding to $T_z = + 1$ to $T_z = 0$ carried out at RCNP-Osaka.The calculations are performed in the $pf$ model space, using the GXPF1a and KB3G effective interactions. Qualitative agreement is obtained for the individual transitions, while the calculated summed transition strengths closely reproduce the observed ones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا