Do you want to publish a course? Click here

A Programming Model for Hybrid Workflows: combining Task-based Workflows and Dataflows all-in-one

123   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper tries to reduce the effort of learning, deploying, and integrating several frameworks for the development of e-Science applications that combine simulations with High-Performance Data Analytics (HPDA). We propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows from now on) using a single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements. To illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library and a fully functional prototype extending COMPSs, a mature, general-purpose, task-based, parallel programming model. The library can be easily integrated with existing task-based frameworks to provide support for dataflows. Also, it provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.



rate research

Read More

Over the last two decades, the field of computational science has seen a dramatic shift towards incorporating high-throughput computation and big-data analysis as fundamental pillars of the scientific discovery process. This has necessitated the development of tools and techniques to deal with the generation, storage and processing of large amounts of data. In this work we present an in-depth look at the workflow engine powering AiiDA, a widely adopted, highly flexible and database-backed informatics infrastructure with an emphasis on data reproducibility. We detail many of the design choices that were made which were informed by several important goals: the ability to scale from running on individual laptops up to high-performance supercomputers, managing jobs with runtimes spanning from fractions of a second to weeks and scaling up to thousands of jobs concurrently, and all this while maximising robustness. In short, AiiDA aims to be a Swiss army knife for high-throughput computational science. As well as the architecture, we outline important API design choices made to give workflow writers a great deal of liberty whilst guiding them towards writing robust and modular workflows, ultimately enabling them to encode their scientific knowledge to the benefit of the wider scientific community.
Exascale computers will offer transformative capabilities to combine data-driven and learning-based approaches with traditional simulation applications to accelerate scientific discovery and insight. These software combinations and integrations, however, are difficult to achieve due to challenges of coordination and deployment of heterogeneous software components on diverse and massive platforms. We present the ExaWorks project, which can address many of these challenges: ExaWorks is leading a co-design process to create a workflow software development Toolkit (SDK) consisting of a wide range of workflow management tools that can be composed and interoperate through common interfaces. We describe the initial set of tools and interfaces supported by the SDK, efforts to make them easier to apply to complex science challenges, and examples of their application to exemplar cases. Furthermore, we discuss how our project is working with the workflows community, large computing facilities as well as HPC platform vendors to sustainably address the requirements of workflows at the exascale.
Scientific workflows have been used almost universally across scientific domains, and have underpinned some of the most significant discoveries of the past several decades. Many of these workflows have high computational, storage, and/or communication demands, and thus must execute on a wide range of large-scale platforms, from large clouds to upcoming exascale high-performance computing (HPC) platforms. These executions must be managed using some software infrastructure. Due to the popularity of workflows, workflow management systems (WMSs) have been developed to provide abstractions for creating and executing workflows conveniently, efficiently, and portably. While these efforts are all worthwhile, there are now hundreds of independent WMSs, many of which are moribund. As a result, the WMS landscape is segmented and presents significant barriers to entry due to the hundreds of seemingly comparable, yet incompatible, systems that exist. As a result, many teams, small and large, still elect to build their own custom workflow solution rather than adopt, or build upon, existing WMSs. This current state of the WMS landscape negatively impacts workflow users, developers, and researchers. The Workflows Community Summit was held online on January 13, 2021. The overarching goal of the summit was to develop a view of the state of the art and identify crucial research challenges in the workflow community. Prior to the summit, a survey sent to stakeholders in the workflow community (including both developers of WMSs and users of workflows) helped to identify key challenges in this community that were translated into 6 broad themes for the summit, each of them being the object of a focused discussion led by a volunteer member of the community. This report documents and organizes the wealth of information provided by the participants before, during, and after the summit.
In order to achieve near-time insights, scientific workflows tend to be organized in a flexible and dynamic way. Data-driven triggering of tasks has been explored as a way to support workflows that evolve based on the data. However, the overhead introduced by such dynamic triggering of tasks is an under-studied topic. This paper discusses different facets of dynamic task triggers. Particularly, we explore different ways of constructing a data-driven dynamic workflow and then evaluate the overheads introduced by such design decisions. We evaluate workflows with varying data size, percentage of interesting data, temporal data distribution, and number of tasks triggered. Finally, we provide advice based upon analysis of the evaluation results for users looking to construct data-driven scientific workflows.
It is common practice to partition complex workflows into separate channels in order to speed up their completion times. When this is done within a distributed environment, unavoidable fluctuations make individual realizations depart from the expected average gains. We present a method for breaking any complex workflow into several workloads in such a way that once their outputs are joined, their full completion takes less time and exhibit smaller variance than when running in only one channel. We demonstrate the effectiveness of this method in two different scenarios; the optimization of a convex function and the transmission of a large computer file over the Internet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا